

Genomics

An Emerging Tool for Land Reclamation and Environmental Management

Scott Weston, M.Sc., P. Geo – Director, Development, Hemmera October 29, 2014

A Snapshot of Hemmera

250

Number of current staff

4

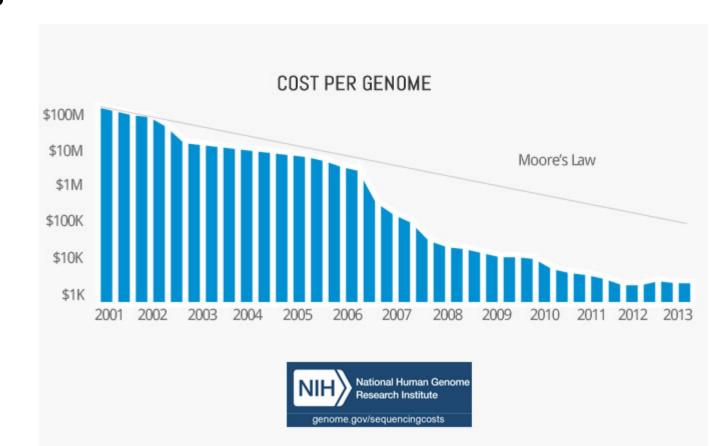
Number of regions we operate in

Lines of Business:

Planning and Management

- Environmental impact assessment
- Environmental monitoring
- Permitting and regulatory authorizations
- Wildlife and aquatic habitat and assessment

Site Assessment and Remediation


- Phase I and II Environmental Site Assessments
- Brownfield development
- Response planning, training, and facilitation
- Waste discharge authorizations and permits

Community Engagement and Social Sciences

- First Nations consultation and engagement
- First Nations negotiation and negotiation support
- Socio-economic baseline studies and effects assessments

Genomics 101

- Genome
- Genomics

Genomics as a tool

'Pollution eating microbes'

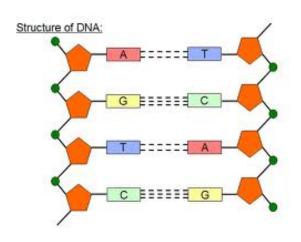
- Certain microbes play a growing role in the clean-up of pollution
- Widely used in the treatment of contaminated soils and groundwater, and are being used increasingly in resource development and environmental management

The Environmental Challenge: Mine Wastewater The shape

The Genomics Challenge

Global Landscape

- Chile: Metallurgical performance of industrial scale bio-heap-leaching monitored by 'omics technologies
- Netherlands: 500 m³ bio-reactor treating sulfate and zinc rich water monitored by genomics for 128 weeks. US: Commercial microarrays for investigating biogeochemical, ecological and environmental processes
- Finland: Simulated bioleaching of poly-metallic sulfide ore was monitored by genomics
- China: Extremely acidic tailings in Pb/Zn mine monitored by genomics
- Canada: Teck, Imperial Metals, Cameco, Shell, Chevron, Suncor, Syncrude... actively involved in proof of concept 'omics projects


What is eDNA

Environmental DNA (eDNA)

- naturally occurring genetic materials that can be collected from the environment
- gametes, dead skin cells, feathers, hair, feces, urine, egg plasma, saliva

Primer and Probe Design

- A good primer will contain an inclusive consensus sequence that incorporates all within-species variability for a species in a well-known sequence of DNA.
- Primers need to incorporate the full range of genetic variation for the target species to avoid false negatives
- Primers need to incorporate the full range of genetic variation for closely related, cooccurring species to avoid false positives.
- Primers can be reviewed against sequences published in GenBank or against sequences obtained from tissue samples of target and co-occurring closely related species.

Project & Survey Design Considerations

Consider sampling requirements to ensure they're appropriate for the system you're sampling...

Project & Survey Design Considerations

Know the species' life history

Is there a permanently aquatic life history phase...

...or does your target taxa tadpole mature in three days, or 6 years???

Rationale & Efficacy

- More cost effective
- Reduced Type I & II errors
- eDNA methods will not transmit pathogens.
- eDNA doesn't disturb, harm or kill both target and nontarget taxa

Key Applications

- Early detection and monitoring (Presence/Notdetected) for management for:
 - Species of regulatory concern
 - Pathogens
 - Early detection of invasive species
 - Confirming eradication of invasive species

Pacific Water Shrew (Sorex bendirii)

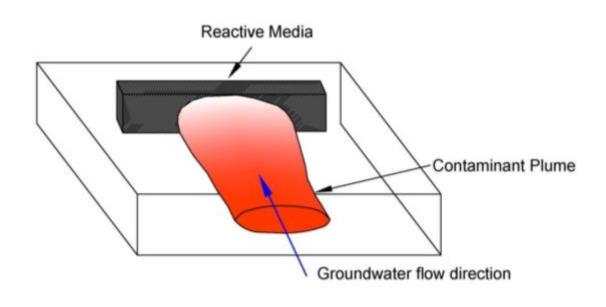
List Status

BC CDC Red listed

COSEWIC Endangered

SARA Endangered S.1

- Pacific water shrew occurs in the BC lower mainland region
- Conventional methods are lethal and have a very low capture rate.
 Identification is also challenging.
- We have four active projects underway


PRBs are like cakes...

How does a PRB work?

Clean Groundwater beyond PRB

Metal Sufides

- + Water
- + Oxygen