

October 29 - 30, 2014 | Wolfville, Nova Scotia

EVALUATION OF COVER SYSTEMS UTILISING GEOSYNTHETIC LAYERS FOR CLOSURE OF COAL WASTE ROCK PILES IN A SEASONALLY HUMID LOCATION

Authors: Greg Meiers - P.Geo. Mike O'Kane - P.Eng. David Mayich - CET

Public Works and Government Services Canada

Presentation Outline

- Background on Reclaimed Waste Rock Piles
- Overview of the Performance Monitoring Systems
- Examples of Cover System Performance
- Final Comments

Enterprise Cape Breton Corporation (ECBC)

- ECBC was a Federal Crown Corporation responsible for environmental remediation associated with coal mining activities in Cape Breton
 - Mining operations began in 1685 and lasted into the 1980s
 - 50 underground mines produced 500 million tonnes of coal

- Consultants through Standing Offer Agreements with PWGSC were engaged to develop closure plans for the coal WRPs
- O'Kane Consultants were engaged to design and install monitoring systems to ensure that the reclaimed WRPs meet closure objectives:
 - 1) Stable landform, 2) Sustainable vegetation and 3) Limiting impacts to receiving environment

Site Location

Site: Near Sydney, NS

Cape Breton Island

- Lingan
- Scotchtown Summit (Summit)
- Victoria Junction (VJ)

Background – Cover Profiles

VICTORIA JUNCTION

0.5m GROWITH MEDIUM

WASTE ROCK

DAM GROWTH MEDIUM

DAM GRPL

0.15m BEDDING SAND

WASTE ROCK

0.5m GROWITH MEDIUM

GEO-FABRIC

0.15m BEDDING SAND

WASTE ROCK

Background – Sydney, N.S.

Climate:

- Mean annual PPT is~ 1,500 mm
 - 1,500 mm
 60% occurs in Winter (from a company)
 October to March)
 - ~50% of winter PPT is snowfall
- Mean annual PE ~700 mm
- Energy deficit in most months

Atmospheric Water Demand In Summer

Background - Lingan

Landform:

- Covers an area of 8.5 ha
- 15 m high
- Plateau ~3% slope transitioning to 5:1 side slope
- Runoff ditch
 constructed around
 plateau which channels
 flow to drop structures
 on side slope

Background - Summit

Landform:

- Covers an area of 44 ha
- Thickness of 1.5m to 10m
- Plateau 3% slope transitioning to 7:1 side slope
- Runoff ditch constructed around perimeter

Background - Summit

Landform:

GEO-FABRIC HIPPE

0.15m BEDDING SAND

WASTE ROCK

Background – Victoria Junction

Landform:

- Covers an area of 26 ha
- Height of 30m
- Plateau ~7%
- Side Slope 3:1
- Ditch constructed around plateau which channels runoff and interflow to drop structures on side slope

Consultants Inc.

In Situ Direct Monitoring

- Monitored water balance component:
 - > AET
 - > PPT
 - Runoff
 - Interflow
 - Water Storage
 - Net percolation (NP)
- NP Estimated through:
 - Water balance
 - Conservative tracer
- Internal WRP Monitoring System:
 - Temperature
 - Pressure
 - GW elevations
 - Pore-gas concentrations
 - Pore-water quality

Fully Automated Meteorological Station

Calculate Potential Evaporation

- Monitored Climatic Parameters at each Site:
 - precipitation
 - > air temperature
 - relative humidity
 - wind speed and direction
 - net solar radiation
- Installed multiple net radiometers (north aspect)
- Snowpack (i.e. SWE)
 measurements
 Automated and manual

Eddy Covariance Station (direct measurement of AET)

Soil Nest Sensor Configuration

- Thermal conductivity (TC) sensors
 - soil suction and temperature
- TDR sensors
 - volumetric water content
- Gas sampling ports
 - O₂ / CO₂ concentrations
- OTT water level sensor
 - Positive pore-water pressure
- Fully automated monitoring
- Numerous monitoring sites to quantify heterogeneity in water dynamics

Surface Runoff Monitoring

Surface Runoff Monitoring

Monitoring Data – Summit

Water Dynamics: Erosion

Comparative Analysis for Slope Section

•		•		•					
	Infiltration Rate (mm/day)								
	2.7	2.0	1.4	0.7	0.27				
Ks (cm/s)	Maximum Height of Water in Cover (m)								
1E-04 <	1.5	1.2	1.0	0.6	0.4				
1E-03	0.4	0.3	0.3	0.2	0.1				
1E-02	0.1	0.1	0.1	0.1	0.0				
1E-01	0.0	0.0	0.0	0.0	0.0				

Monitoring Data - Summit

Long-Term Erosion

- Chemically Stable
- Low Slope Angles
- Significant Vegetation
- Pore-Water Effects!!!

Critical erosion hazards zone revegetation success poor.

30° (1.75H:1V)

Moderate erosion hazards zone revegetation success fair.

20° (2.75H:1V)

Moderate erosion hazards zone revegetation success good.

15° (3.75H:1V)

Moderate erosion hazards zone revegetation success very good.

Slight erosion hazards zone - slope influence minimal.

Monitoring Data – Summit Water Dynamics: Leakage

Monitoring Data – Summit

Water Dynamics: Leakage

Comparative Analysis for Plateau

	Infiltration Rate (mm/day)							
	2.7	2.0	1.4	0.7	0.27			
Ks (cm/s)	Maximum Height of Water in Cover (m)							
1E-04 <	17.5	14.7	11.5	7.5	4.2			
1E-03	4.2	3.6	2.8	1.9	1.1			
1E-02	1.1	1.0	8.0	0.6	0.4			
1E-01	0.4	0.3	0.2	0.2	0.1			

Monitoring Data –Victoria Junction

Water Dynamics:

 VJ granular drainage layer is drained, minimizes potential for leakage, maximize slope stability

Monitoring Data – Victoria Junction

Water Dynamics:

- The outlet from the plateau drainage layer is a bottle neck to flow and could result in erosion or failure
- Perimeter ditch constructed perpendicular to slope along the crest will be 'fighting' natural geomorphic processes

Monitoring Data – Victoria Junction

Water Dynamics:

Monitoring Data – Lingan / VJ / Summit Water Balance:

- Runoff at Summit ~60%
- Interflow at Victoria Junction ~15%
 - Interflow offsets proportional runoff volume
 - Minimum 20% interflow volumes to minimize buildup of positive pore-water pressures
- Net Percolation at Lingan ~30%
 - Net percolation offsets a proportional runoff volume

Net Percolation Rates

Cover System Type

Geomembrane Growth Medium

<5% 10% 20% 30%

Range of Net Percolation Rates

Very Low Low Moderate High

Runoff Rates

Cover System Type

Growth Medium

Geomembrane

20 to 30%

50%

60%

Range of Runoff Rates

Very Low

Low

Moderate

Drainage Layer

High No Drainage

Final Comments

- Reclaimed WRPs have resulted in improvements to the receiving environment
- Given the relatively small WRPs, the issues identified here would be more significant when scaled up to a larger landform
- As environmental regulations become more stringent geosynthetics may become more common as a closure option
- An understanding of the engineering properties for geosynthetics have been developed but limited information is available in regards to the in-service performance

Final Comments

 Focus your engineering design on protecting and maximizing the performance of the barrier layer

