Temporal and Spatial Patterns of Soil Chemistry and Primary Productivity in a Recently Restored Salt Marsh

Christa Skinner, MSc Candidate, Saint Mary's University Dr. Danika van Proosdij, Dr. Jeremy Lundholm, Dr. David Burdick and Tony Bowron

One University. One World. Yours.

Salt Marsh Importance

- Highly productive and lie at interface between land and ocean (Townend et al., 2010; Butler and Weis, 2009)
- Provide unique habitat (Allen, 2000; Townend et al., 2010)
- Protection from storm surges and coastal erosion, carbon sequestration (Townend et al., 2010; Chmura et al., 2003; Butler and Weis, 2009) and limit nutrient exchange between ocean and upland (Kostka et al., 2002)

Hydrology

- Influences physiochemical environment, vegetation and transports sediment and nutrients (Mitsch and Gosselink, 2007)
- Tidal and ground water (Reddy and DeLaune, 2008; Wilson and Morris, 2012)
 - Redox potential, saturation, salinity and nutrient cycling
- Wilson and Morris (2012): at high tide, increase in tidal amplitude will increase the amount of groundwater exchange within the system

Salinity and Sulfide Concentration:

Uptake of Nitrogen for Spartina alterniflora

- Chambers et al. 1998
 - unaffected by extremely high sulfide concentration
 - decreased with an increase in salinity
- Koch and Mendelsshn, 1989; Mendelssohn and Seneca, 1980
 - decreased productivity and uptake with high sulfide concentrations

Salt Marsh Restoration

- Salt marshes, Bay of Fundy (Davidson-Arnott et al., 2002)
 - 395 km² prior to European settlement
 - 65 km² due to dyking
- Significant loss of species, habitat and productivity (van Proosdij et al., 2010)
- Need for restoration
- BUT
 - Restoration of tidal flow = changes to biogeochemisty = effects vegetation, nekton and other wildlife (Anisfeld, 2012)

Research Questions

- How does the hydrologic network of a newly restored salt marsh relate to spatial and temporal variability of salinity, sulfide concentration and redox potential?
- How do these variables influence above ground biomass across the marsh surface?

Objectives

- Determine appropriate depth for redox potential and salinity levels
- Determine temporal variation of sulfide concentration, salinity and redox potential and how this relates to hydrology and above ground biomass
- Determine spatial variation of sulfide concentration, salinity and redox potential and how this relates to hydrology and above ground biomass
- Determine the influence of meteorological conditions, specifically rainfall and temperature, on sulfide concentration, salinity and redox potential

Study Area: Bay of Fundy

- Largest tides in the world
 - 4m at the entrance of the Bay (Davidson-Arnott et al., 2002)
 - 13 to 16 m in the upper reaches of the Minas Basin (Hinch, 2004)
- Substantial suspended sediment concentration and deposition (van Proosdij et al., 2010)
 - 150 mgl⁻¹ on the marsh surface
 - 4000 mgl⁻¹ in the upper reaches of the Minas Basin

Top: http://de.wikipedia.org/wiki/Bay_of_Fundy Bottom: http://husky1.smu.ca/~dvanproo/Research_main.html

Study Area: Cheverie Creek Salt Marsh Restoration Site



Site Set Up

Pilot Study

Study

Methodology: Pilot Study

Methodology

Methodology: Study

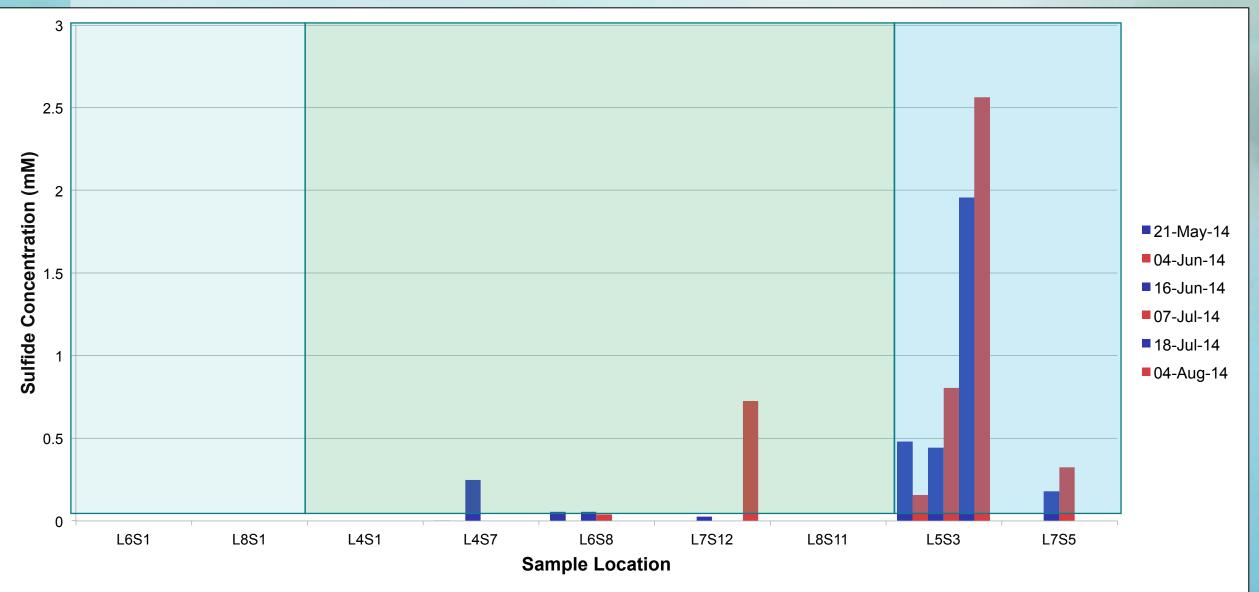
What was Different?

- Used 42 sample plots instead of 9
- Root depth processing identified bulk root depth between 0 – 10 cm therefore 5 cm chosen for redox and salinity
- 3 measurements for salinity & redox

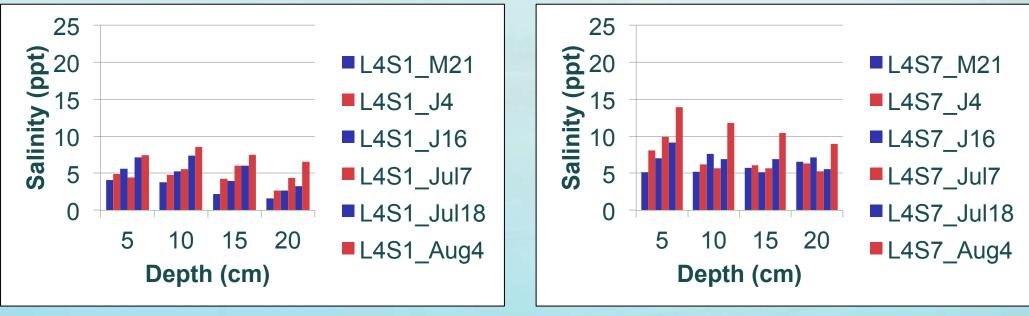
Methodology: Throughout study

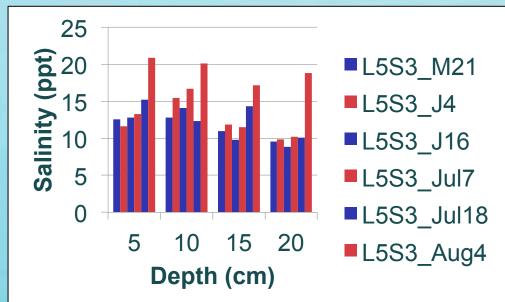
Ground Water & Tide Level

Meteorological

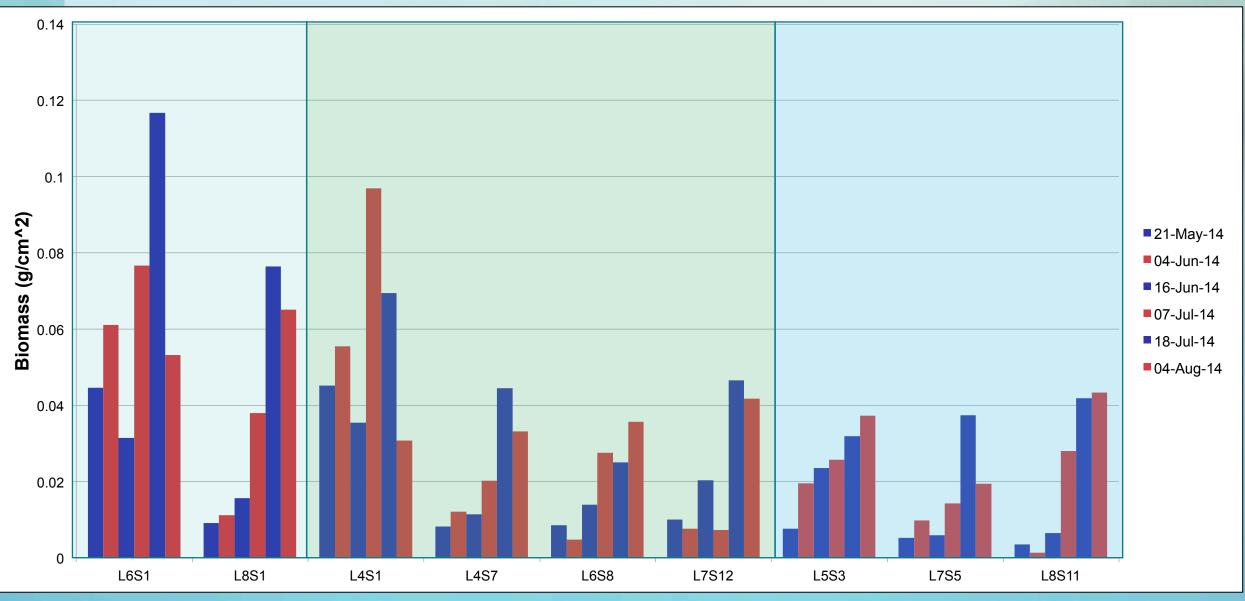

Results: Pilot Study

Redox Potential


- Majority of stations were experiencing: Oxygen, Nitrate; Manganese (IV) and Iron (III) reduction at the time of sampling
- Oddities:
 - May 21, 2014 at L7S12 (5 cm depth) Sulfate
 - June 4, 2014 at L8S11 (20 cm depth) Carbon Dioxide
 - June 16, 2014 at L7S5 (15 cm depth) Carbon Dioxide

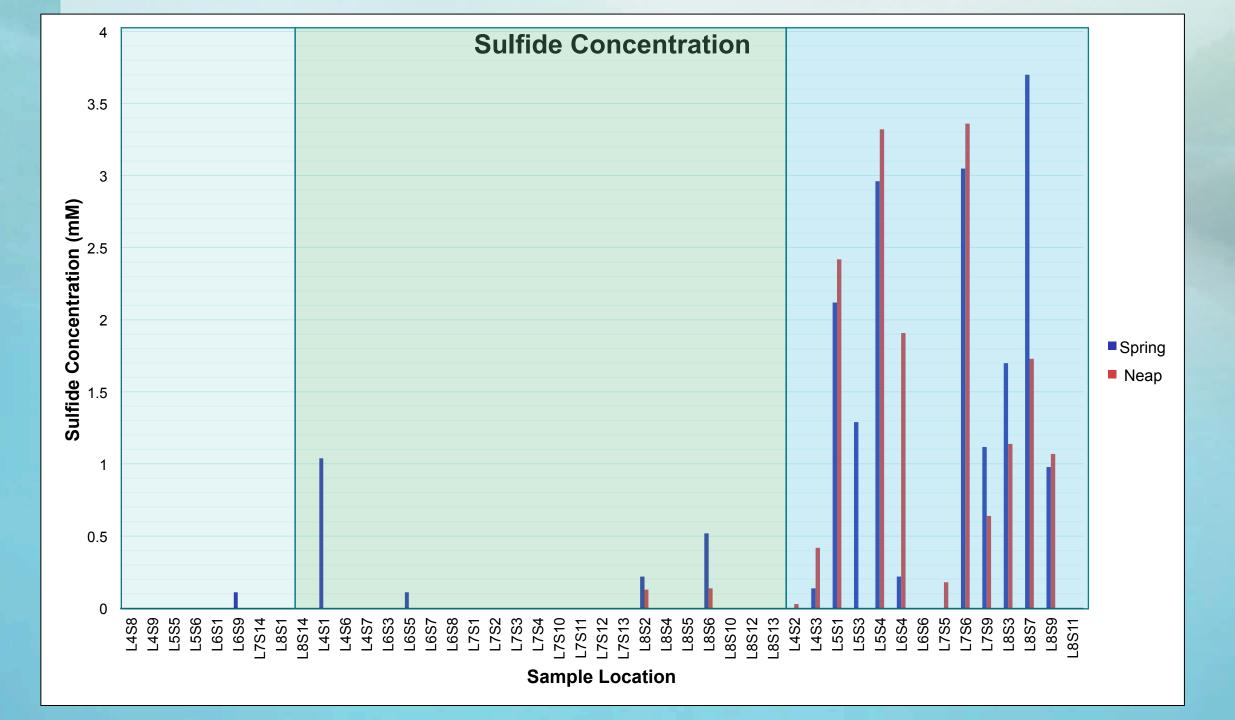

Electron Acceptor	Reduced To	Redox Potential (mV)
Oxygen (O ₂)	H ₂ O	> +300
Nitrate (NO ₃ -)	N_2^{+} , NH_4^{+}	+300 to +100
Manganese (Mn ⁴⁺)	Mn ²⁺	+300 to +100
Iron (Fe ³⁺)	Fe ²⁺	+100 to -100
Sulfate (SO ₄ ²⁻)	S ²⁻	-100 to -200
Carbon dioxide (CO_2)	CH ₄	-200 to -300

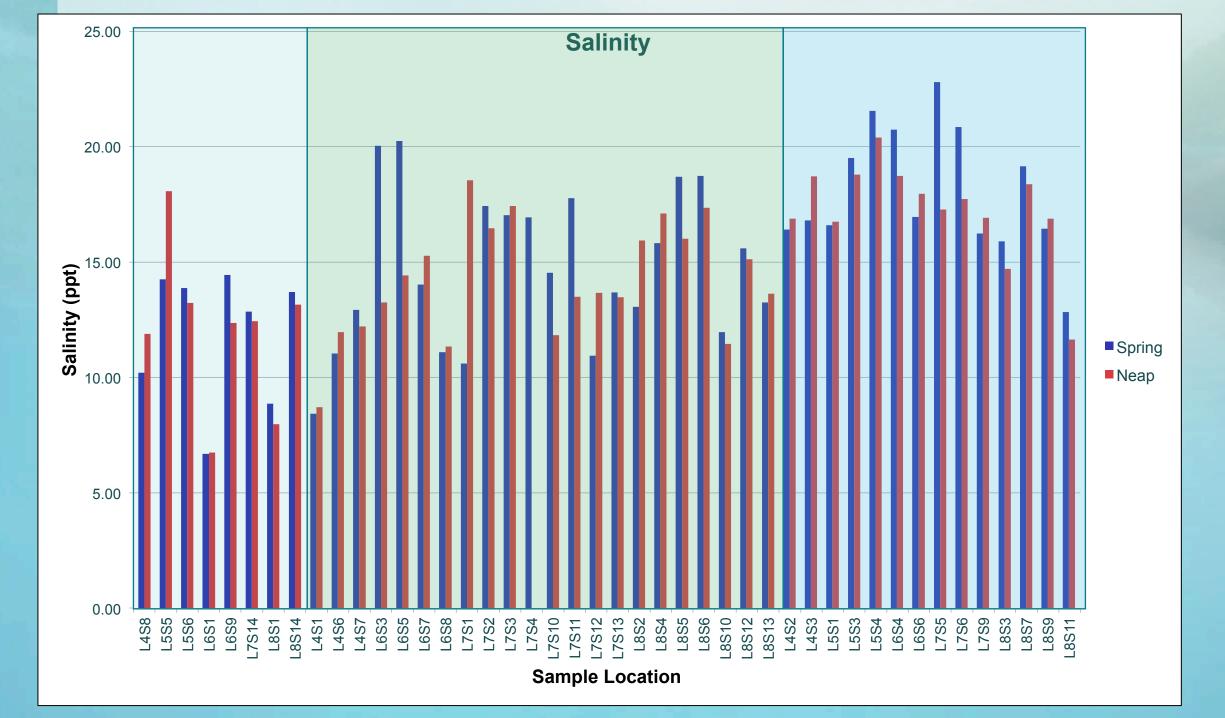
Sulfide



Salinity

Above Ground Biomass




Results: Study

Redox Potential

- All of the stations were experiencing Nitrate; Manganese (IV) and Iron (III) reduction
- Sites experiencing Oxygen reduction:
 - L6S1 August 14, 2014 & August 21, 2014
 - L8S1 August 21, 2014

Preliminary Conclusions

- Differences emerging between "well", "moderate" and "poorly" drained sites
- Processing to be completed:
 - Hydrology
 - Biomass
 - Meterological
 - Sediment characteristics

References

- Mora, J. and Burdick, D. 2013. Effects of man-made berms upon plant communities in New England salt marshes. Wetland Ecology and Management, 21(1) DOI 10.1007/s11273-013-9285-7
- Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Review, 19: 1155- 1231.
- Anisfeld, S.C. 2012. Biogeochemical responses to tidal restoration. In Tidal Marsh Restoration eds. Roman, C.T. and Burdick, D.M. pp. 39-58.
- Armstrong, W., Wright, E.J., Lythe, S. and Gaynard, T.J. 1985. Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh. Journal of Ecology, 73: 323-339.
- Butler, C. and Weis, J. 2009. Salt marshes: a natural and unnatural history. Rutgers University Press.
- Chambers, R. M., Mozdzer, T.J, and Ambrose, J.C. 1998. Effects of salinity and sulfide on the distribution of Phargmites australis and Spartina alterniflora in a tidal saltmarsh. Aquatic Botany, 62: 161-169
- Colmer, T. D. and Flowers, T. J. 2008. Flooding tolerance in halophytes. New Phytologist, 179: 964-974 doi: 10.1111/j.1469-8137.2008.02483.x
- Davidson-Arnott, R. G. D., van Proosdij, D., Ollerhead, J., and Schostak, L. 2002. Hydrodynamics and sedimentation in salt marshes: examples from a macrotidal marsh, Bay of Fundy.
 Geomorphology 48: 209-231.
- DeLaune, R.D., Smith, C.J. and Tolley, M.D. 1984. The effect of sediment redox potential on nitrogen uptake, anaerobic root respiration and growth of Spartina alterniflora Loisel. Aquatic Botany, 18: 223-230.
- Hinch, P. 2004. Moving toward integrated management of the Minas Basin: A capsule summary of progress. In Wells, P.G., Daborn, G.R., Percy, J.A., Harvey, J. And Rolston, S.J. (Eds) Proceedings of the 5th Bay of Fundy Science Workshop and Coastal Forum "Taking the Pulse of the Bay", Wolfville, Nova Scotia, May 13-16, 2002. Environment Canada (Atlantic Region) Occasional Report No. 21, Dartmouth, N.S. and Sackville, N.B. Pages 221-227.
- Koch, M.S. and Mendelssohn, I.A. 1989. Sulfide as a soil phytotoxin: Differential responses in two marsh species. Journal of Ecology, 77(2): 565-578.
- Kostka, J.E., Roychoudhury, A. and van Cappellen, P. 2002. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry, 60: 49-76.
- Mendelssohn, I. A., and Seneca, E. D. 1980. The influence of soil drainage on the growth of salt marsh cordgrass Spartina alterniflora in North Carolina. Estuarine and Coastal Marine Science, 11(1): 27-40.
- Portnoy, J.W. and Giblin, A.E. 1997a. Biogeochemical effects of seawater restoration to dyked salt marshes. Ecological Applications, 7(3). 1054-1063.
- Reddy, K. R. and R. D. DeLaune. 2008. Biogeochemistry of Wetlands. Taylor & Francis Group, LLC: Boca Raton, Florida.
- Townend, I., Fletcher, C., Knappen, M., and Rossington, K., 2010. A review of salt marsh dynamics. Water and Environmental Journal, 25: 477-488, doi:10.1111/j.1747-6593.2010.00243.
- van Proosdij, D., Lundholm, J., Neatt, N., Bowron, T., and Graham, J. 2010. Ecological re-engineering of a freshwater impoundment for salt marsh restoration in a hypertidal system. *Ecological Engineering* 36: 1314-1332.
- Wilson A.M. and Morris, J.T. 2012. The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry, 108: 27-38. DOI: 10.1007/s10533-010-9570-y

Questions?

Acknowledgements

Emma Poirier, Erin Keast, CBWES Inc. (Tony Bowron, Nancy Neatt, Jennie Graham), Carly Wrathall, Connie Clarke (SMU), Kevin Keys, Chris Peter (UNH), Greg Baker (Mp_SPARC), Hazel Dill (Cheverie Crossway Salt Marsh Society), Matthew and Tom Skinner, Hilary Neckles (USGS), Greame Matheson, Department of Transportation and Infrastructure Renewal, Nova Scotia Research and Innovationn Graduate Scholarship