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Salt Marsh Importance 
•  Highly productive and lie at interface 

between land and ocean (Townend et al., 
2010; Butler and Weis, 2009) 

•  Provide unique habitat (Allen, 2000; Townend et 
al., 2010) 

•  Protection from storm surges and 
coastal erosion, carbon sequestration 
(Townend et al., 2010; Chmura et al., 2003; Butler and Weis, 

2009) and limit nutrient exchange 
between ocean and upland (Kostka et al., 
2002) 



Hydrology 
•  Influences physiochemical 

environment, vegetation and 
transports sediment and nutrients 
(Mitsch and Gosselink, 2007) 

•  Tidal and ground water (Reddy and 
DeLaune, 2008; Wilson and Morris, 2012) 
–  Redox potential, saturation, salinity and 

nutrient cycling 

•  Wilson and Morris (2012): at high tide, 
increase in tidal amplitude will 
increase the amount of groundwater 
exchange within the system 



Salinity and Sulfide Concentration:  
Uptake of Nitrogen for Spartina alterniflora 

•  Chambers et al. 1998 
–  unaffected by extremely high sulfide 

concentration 
–  decreased with an increase in salinity 

•  Koch and Mendelsshn, 1989; 
Mendelssohn and Seneca, 1980 
–  decreased productivity and uptake with 

high sulfide concentrations 



Salt Marsh Restoration 
•  Salt marshes, Bay of Fundy 

(Davidson-Arnott et al., 2002)  
–  395 km2 prior to European settlement 
–  65 km2  due to dyking  

•  Significant loss of species, habitat 
and productivity (van Proosdij et al., 
2010) 

•  Need for restoration 

•  BUT  
–  Restoration of tidal flow = changes to 

biogeochemisty = effects vegetation, 
nekton and other wildlife (Anisfeld, 
2012) 



Research Questions 
•  How does the hydrologic network of a newly restored salt marsh 

relate to spatial and temporal variability of salinity, sulfide 
concentration and redox potential?  

•  How do these variables influence above ground biomass across the 
marsh surface? 



Objectives 
•  Determine appropriate depth for redox potential and salinity levels  
•  Determine temporal variation of sulfide concentration, salinity and 

redox potential and how this relates to hydrology and above ground 
biomass 

•  Determine spatial variation of sulfide concentration, salinity and 
redox potential and how this relates to hydrology and above ground 
biomass 

•  Determine the influence of meteorological conditions, specifically 
rainfall and temperature, on sulfide concentration, salinity and redox 
potential  



Study Area: Bay of Fundy 
•  Largest tides in the world 

–  4m at the entrance of the Bay 
(Davidson-Arnott et al., 2002)  

–  13 to 16 m in the upper reaches of 
the Minas Basin (Hinch, 2004) 

•  Substantial suspended 
sediment concentration and 
deposition (van Proosdij et al., 2010) 
–  150 mgl-1 on the marsh surface  
–  4000 mgl-1 in the upper reaches of 

the Minas Basin 

Top: http://de.wikipedia.org/wiki/Bay_of_Fundy Bottom: http://husky1.smu.ca/~dvanproo/Research_main.html 



Study Area:  
Cheverie Creek Salt Marsh Restoration Site 



Site Set Up 
Pilot Study Study 



Methodology: Pilot Study 



Methodology 
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Methodology: Study 



What was Different? 
•  Used 42 sample plots instead 

of 9 

•  Root depth processing 
identified bulk root depth 
between 0 – 10 cm therefore 5 
cm chosen for redox and 
salinity 

•  3 measurements for salinity & 
redox 



Methodology: Throughout study 

Ground Water & Tide Level 
 
Meteorological 
 



Results: Pilot Study 



Redox Potential  
•  Majority of stations were 

experiencing: Oxygen, Nitrate; 
Manganese (IV) and Iron (III) 
reduction at the time of 
sampling 

•  Oddities: 
– May 21, 2014 at L7S12 (5 cm 

depth) Sulfate  
–  June 4, 2014 at L8S11 (20 cm 

depth) Carbon Dioxide  
–  June 16, 2014 at L7S5 (15 cm 

depth) Carbon Dioxide  

Electron Acceptor Reduced To Redox Potential (mV) 
Oxygen (O2) H2O > +300 
Nitrate (NO3

-) N2, NH4
+ +300 to +100 

Manganese (Mn4+) Mn2+ +300 to +100 
Iron (Fe3+) Fe2+ +100 to -100 

Sulfate (SO4
2-) S2- -100 to -200 

Carbon dioxide (CO2) CH4 -200 to -300 
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Results: Study 



Redox Potential  
•  All of the stations were 

experiencing Nitrate; 
Manganese (IV) and Iron (III) 
reduction 

•  Sites experiencing Oxygen 
reduction: 
–  L6S1 August 14, 2014 & August 21, 

2014 
–  L8S1 August 21, 2014 
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Preliminary Conclusions 
•  Differences emerging between 

“well”, “moderate” and “poorly” 
drained sites 

•  Processing to be completed: 
– Hydrology 
–  Biomass 
– Meterological 
–  Sediment characteristics 
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