Sustainable Re-vegetation: A Multi-disciplined Approach

Sébastien Marquis; Tim Boudreau

Atlantic Reclamation Conference, Wolfville NS, October, 2014

Re-vegetation Projects

Re-vegetation: Multi-Faceted vs. Single

Multi-faceted Approach

- Different, indigenous plant varieties
- Already acclimated to local conditions
- Requires detailed design & monitoring

Single Approach

- Single plant variety (e.g., sodding, hydro-seeding, saplings)
- Typically from nursery or sterile, hybrid stocks
- May or may not top dress
- Apply and leave process (hope for the best)

Re-vegetation Sustainability Challenges

- Contaminants presence / absence
- Current ecosystem present
- Parasites, pests, disease, bad fungal attack
- Climate / Seasonality
- Geography / Topography
- Geology / Hydrogeology

If planned for in advance, the effects of these can be diminished

SINGLE (simple) APPROACH

ADVANTAGES

- Can be used in hard-to-reach places
- Completed quickly; fast service
- Rapid land stability
- Often seems acutely cost-efficient

DOWNSIDES

- Quick vegetation may be unhealthy
 - shallow-rooted = slumping
- No growth monitoring
- High probability of losses due to pest, disease, weather
- May not be cost-efficient in long-term

MULTI-DISCIPLINED APPROACH

ADVANTAGES

- Greatly improved survival rates
- Seed propagation often at year-1
- Natural colonization of other biological assemblages
- increased biodiversity
- Monitoring plan
- Often cost-efficient in long-term

DOWNSIDES

- Complex planning
- Plant collection/sowing
- Establishment can be slower
- Seems expensive in the short-term (hard sell to clients)

Multi-faceted Approach Considerations

Soil Preparation

- Soil type
- Moisture / drainage
- Fertility / dterility
- Soil condition (pH, etc)
- Organic content
- Insect WEB
- Mycelium presence/ absence

Botanical Selection

- Relevant habitats
- Remedial approach (decision tree)
- Local, indigenous species
- Need for phytoremediative species
- Species hardiness
- Pollinators
- Introducing foraging wildlife
- Biological indicators
- Collection and planting / sowing

Re-vegetation Tools (phytoremediation)

ITRC - Phytoremediation Decision Tree

December 1999

Phytoremediation Tools

Table 1-1: Types of Phytoremediation for Organic Compounds

T 071		G	
Type of Phytoremediation	Process Involved	Contaminant Treated*	
1 – Phytostabilization	Plants control pH, soil gases, and	Expected for phenols,	
	redox conditions in soil to	chlorinated solvents	
	immobilize contaminants.	(tetrachloromethane and	
	Humification of some organic	trichloromethane), and	
	compounds is expected.	hydrophobic organic	
		compounds	
2 - Rhizodegradation,	Plant exudates, root necrosis, and	Polyaromatic hydrocarbons,	
phytostimulation,	other processes provide organic	BTEX, and other petroleum	
rhizosphere	carbon and nutrients to spur soil	hydrocarbons, perchlorate,	
bioremediation,	bacteria growth by two or more	atrazine, alachlor,	
or plant-assisted	orders of magnitude. Exudates	polychlorinated biphenyl	
bioremediation	stimulate degradation by	(PCB), and other organic	
	mycorrhizal fungi and microbes.	compounds	
	Live roots can pump oxygen to		
	aerobes and dead roots may		
	support anaerobes.		
3 - Rhizofiltration or	Compounds taken up or sorbed by	Hydrophobic organic	
contaminant uptake	roots (or sorbed to algae and	chemicals	
-	bacteria)		
4 - Phytodegradation or	Aquatic and terrestrial plants take	Munitions (TNT, DNT, HMX,	
phytotransformation	up, store, and biochemically	nitrobenzene, picric acid,	
	degrade selected organic	nitrotoluene), atrazine,	
	compounds to harmless	halogenated compounds	
	byproducts, products used to	(tetrachloromethane,	
	create new plant biomass, or	trichloromethane,	
	byproducts that are further broken	hexachloroethane, carbon	
	down by microbes and other	tetrachloride, TCE,	
	processes to less harmful products.	tetrachloroethane,	
	Reductive and oxidative enzymes	dichloroethane), DDT and	
	may be used in series in different	other chlorine and phosphorus	
	parts of the plant.	based pesticides, phenols, and	
	-	nitrites.	
5 - Phytovolatilization	Volatile organic compounds are	Chlorinated solvents	
	taken up and transpired. Some	(tetrachloromethane and	
	recalcitrant organic compounds are	trichloromethane), organic	
	more easily degraded in the	VOCs, BTEX, MTBE	
	atmosphere (photodegradation).		

Re-vegetation Decision Trees

The Case Study

Land and Swamp Reclamation Overview

Project Details

- Trucking oil spill contaminated 2 habitats a Meadow (2,600m²) and Swamp (900m²)
- Remedial Action: creation of a Wetland and Meadow after bulk contaminant removal
- Geology: mineral-rich (Al, Fe, Mn, Zn) soil, low organic content
- Re-vegetation design included phytoremediation (treatment of residuals)
- Implemented in Autumn
- \$480,000 cost for reclamation and monitoring phase

Site-Specific Botanical Selections

Terrestrial
8 plants,
4 trees,
3 fungal types,
4 seed varieties

Common Name	Latin Name	ConsolEssation(s)	Individual Counts		
Common Name	Latin Name	General Function(s)	Cell 1	Cell 2	Cell 3
Terrestrial					
Red-Osier dogwood	Comus sericea	Land stabilization, HC segregation	8	6	2
Black spruce	Picea mariana	Land stabilization, hydraulic control	8	5	18
Yellow and grey birch	Betula alleghaniensis, B. populifolia	Land stabilization, hydraulic control	1	2	3
Atlantic goldenrod Solidago arguta		Metals remediation, salt resistance	64	44	51
Goose-tongue plantain Plantago maritime		Soil enhancement, hydraulic control	-	23	15
Evening Nightshade	Solanum spp	Swale stabilization	5	8	10
Wild carrots	Daucus carota	Metal/HC remediation, stabilization	64	22	20
Sweet fern	Comptonia peregrina	Hydraulic control, berm stabilization, metals remediation, nutrients	9	5	3
Mycological plugs Boletus spp., Conocybe spp., Amanita spp.		Fungal and bacterial enhancement of virgin soils, bioremediation	360	200	200
Rye, clover, fescue seed-stock	Secale cereale, Trifolium	Land stabilization, phytoremediation	15 lbs.	10 lbs	10 lbs
Riparian					
Willow	Salix spp.	Bank stabilization, HC remediation	26	19	24
Bulrush	Scirpus validus, S. fluviatilis, S. campestris	Hydrocarbon remediation, salt resistance, bacterial enhancement	21	12	-
Soft Rush	Juncus effusus	HC remediation, bank stabilization	-	5	16
Aquatic					
Duck Potato	Sagittaria lancifolia	WQ, bio-monitor	-	13	5
American water plantain	Alisma subcordatum	Metals/HC remediation, WQ	9	25	12
Ribbon Grass	Vallisneria americanai	WQ, bio-monitor	3	32	12
Ribbon grass seed stock	" "	46 44	-	2 Lbs	
Cattails	Typha spp	Hydrocarbon remediation, bacterial enhancement, silt recovery, WQ	41	-	62
Water lily	Nuphar variegatum	Metals phytoremediation, WQ	-	19	9
Bur-reed	Sparganium americana	WQ, bacterial enhancement	5	5	
Aquatic water milfoil	Myriophyllum sibiricm	WQ, hydrocarbon segregation	popul	popul	popul
Bladderwort	Urticularia vulgaris	Mosquito control, WQ	popul	popul	popul
Plant Total				-	_
Plant Total			264	245	262

Multiple Activities

Soil Reinstatement and Landscaping

Mycelium Inoculation

Seed Sowing

Indigenous Plant Collection

Planting / Sowing

1 Acre = 4 Men, 7 Days

Naturally Sustainable Evolution

Monitoring

Day 0 8 Months 16 Months

Naturally Sustainable Evolution

Terrestrial Ecosystem

Implementation

8 Months

20 Months

Aquatic and Riparian Ecosystems

Added Benefits

Biological Balance

Natural biota colonization

Aesthetics / recreational use

Sustainable bio-remediation

CONCRETE RESULTS

ANY QUESTIONS?

ROCHON