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Presentation Discussion Points 
• Overarching Project Background 
• Background for Focus of this Presentation 

 Reclaimed Victoria Junction Site  
• Conceptual Model 

 Physical 
 Flow 
 Geochemical 

• Summary 
Discussion Points 

Water and O2 Ingress to Pile
Mobilization Rate

GW Mounding 

Upward Gradient
in Bedrock

Geochem Model
Potential and Stored Acidity 

Drain-down
NP

VJ ST-2016



Conceptual Model 
 Analytical tool with several variations and contexts 
 Used to collect and organize ideas to be assessed in a 

holistic manner 
 Strong conceptual models capture something real and 

identifies the problem to be solved 

 Developing a conceptual model (understanding) of past 
and current conditions 

 An understanding of the strategies required to solve the 
problem 

 Minimizes uncertainty and risk 
 Understanding of likely outcomes before numerical 

modelling commences… if required 
 

Leads Us To 



Background – Site Location 

Toronto 

Site:  Near Sydney, NS  
      Cape Breton Island 
 

Atlantic Canada 



 ECBC is a Federal Crown 
Corporation responsible for 
environmental remediation 
associated with coal mining 
activities in Cape Breton 
 Mining operations began in 

1685 to the 1980s 
 50 underground mines 

produced 500 million tonnes of 
coal 

  Responsibility for sites now under 
Public Works and Government Services Canada 
 O’Kane Consultants installed cover system monitoring system ~5 

years ago 
 Evaluation of detailed cover system and overall landform 

performance for four of the sites 
• VJ, Summit, Lingan, Franklin 

 Meiers et al 2014 

Background – ECBC 



Scotchtown Summit Lingan 

Franklin Victoria Junction 

Background – Cover System Profiles 



 Monitored water 
balance component:  
 AET 
 PPT 
 Runoff 
 Interflow 
 Water Storage 

 NP Estimated through:  
 Water Balance 
 Conservative Tracer 

 Internal WRP 
Monitoring System:  
 Temperature 
 Pressure 
 GW Elevations 
 Pore-Gas Concentrations 
 Pore-Water Quality 

Meiers et al 2014 

Background – In Situ Monitoring 
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 Mean annual PPT is  
~ 1,500 mm 

 60% occurs in Winter 
(from October to March)   

 ~50% of winter PPT is 
snowfall   

 Mean annual PE ~700 mm 
 Energy deficit  in most 

months 
 

Atmospheric Water Demand 
In Summer 

Climate: 

PE PPT 

Meiers et al 2014 

Background – Typical Climate 
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Water Balance: 
 Runoff and Interflow ~66% 
 Greater Interflow at Victoria Junction & Franklin 
 Interflow offsets proportional runoff volume 

 Net Percolation at  
Lingan ~30% 
 Net percolation 

offsets  
a proportional 
runoff  
volume 

 

Meiers et al 2014 

Background – Monitoring Comparison 



VJ – Site Background 

 Covers an area of 26 ha 
 Height of 40m 
 Plateau ~7%  
 Side Slope 3:1 
 Runoff ditch constructed 

around plateau which 
channels runoff to drop 
structures on side slope 
 

Landform: 



VJ ST-2016 Indicator / Receptor of changes to loading 
allowing geochemical model to be evaluated 

• Loading to wetland and groundwater 
 
 

 
  

VJ – Developing Conceptual Model 

VJ ST-2016 
Active Treatment 

Pre-Closure 
Pump and 
Treat Wells 

Polishing Pond 

Passive Treatment 
Post-Closure  
Surge Ponds  
Pre-Closure 

Wet Well 
Leachate Collection System 

N
 Grand Lake 

Northwest Brook 

Smith’s Brook 

VJ WRP 



Surface 
 

  

VJ – Physical Model 



VJ – Physical Model 

Bedrock Bedrock 

Sand 

Bedrock 

Sand 

Peat 

Bedrock 

Sand 

Peat 

Till Bedrock 

Sand 

Peat 

Till 

WRP 

Lithology 
 

  



VJ – Physical Model 

• TSF No.1 and No.2 relocated to WRP 
• TSF No.3 and No.4 covered in 1987 
• TSF No.5 active until 1988 
• Effect of tailings facilities on WRP 

drain-down  
 

 
  

TSF No.5 

WRP: Waste Rock / Tailings 
 

  

TSF No. 5  
18 m thick 

TSF No. 3 and 4 
8 to 10 m thick 

TSF No. 1 and 2  
20 m thick 

TSF No.5 



VJ – Flow Model 
 Surface and groundwater contaminant load focused to 

Monitoring Point 2016 (VJ ST-2016) 
 Upward gradient in bedrock drives contaminant plume to surface 

VJ ST-2016 
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Progressive changes to site 
operations: 

• Factors leading to changes in loading 
and water quality  
 

 
  

VJ – Developing Conceptual Model  

3 1 2 

Acid Load Mass Balance 
to Test Three Conceptual 
Models: 
1) Active treatment no 

cover system 
2) Passive treatment with 

cover system 
3) 100yrs post reclaimed 

WRP 
 
 

  



Oxygen Flux Net Percolation

30-40 m 

Oxygen 21%, Decreasing With Depth

High Net Percolation ~400 mm/yr
PAF Waste Rock 788 t/yr

12 t/yr

234 t/yr

100 t/yr

688 t/yr

144 t/yr

4 t/yr

VJ ST-2016Net Percolation

Runoff From Site

Active Treatment System

Mounding
Groundwater 

Collection

Calculated = 185 t/yr

Observed = 181 t/yrGroundwater

Alkalinity

-2 t/yr

146 t/yr

Grand Lake

Background

37 t/yr

Source term, water quality 
at base of pile 

VJ – Acid Load Phase 1 
Pre-cover system with active treatment 
• Load = Flow × Concentration 
• NP ~400 mm/yr 
• Load – Basal seepage and runoff 
• Water treatment removes ~788 t/yr – groundwater collection 

system and surface runoff  

RO: 70% 
P/T: 40% of basal load 

Total: 185 t/yr 

Total: 934 t/yr 



Managing Load & Cover Systems 
Two “Models”, or Approaches, used 
to Typically Evaluate Benefits of 
Managing Net Percolation and 
Oxygen to Sulphidic Waste 

Lo
ad

 

Net Percolation (% of annual PPT) 

Solubility Control 

Reaction Control 

Low 

High 

High 
Solubility Control 

Reaction Control 

Low 

High 

High 
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Acid Load vs. Acidity 
  
Acid Load: 
 Concentration x Flow Rate 
 
Acidity: 
 Concentration 



VJ – Managing Load 
Seasonal Changes in Acid load at VJ ST-2016 
would support: 
 Solubility Controlled – Constant Concentration 
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VJ ST-2016 



VJ – WRP Drain-Down 
Saturated drain-down estimated at 75 mm/yr and will 
terminate in approximately 20 years 

• Numerical modelling completed to verify rates and unsaturated 
drain-down 
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VJ – Conceptual Model 
Post-Cover System 
 
  

Water and O2 Ingress to Pile 
Mobilization Rate 

 Upward gradient in bedrock drives contaminant plume to surface 

GW Mounding  

Upward Gradient 
in Bedrock 

Geochem Model 
Potential and Stored Acidity  

Drain-down 
NP 

VJ ST-2016 



Oxygen Flux Net Percolation 

0.4 m Runoff From Site
1.52 mm

Drain-down

Net Percolation

Granular Drainage layer
HDPE Geomembrane

30-40 m

Oxygen < 1%, Decreasing With Depth
Low Net Percolation ~1 mm/yr

PAF Waste Rock

0.4 m Till Growth Medium Cover Layer

0 t/yr
Leachate Collection System

Passive Treatment System

VJ ST-2016

10 t/yr

1 t/yr

12 t/yr
0 t/yrMounding

25 t/yr
28 t/yr

10 t/yr

Calculated = 63 t/yr

Observed = 66 t/yr

Alkalinity

Groundwater

Alkalinity

-2 t/yr

26 t/yr

Grand Lake

Background

37 t/yr

Post-cover system with passive treatment 
• Load contributed through basal seepage, load from runoff removed 
• Total acid load generated reduced from ~934 t/yr to ~38 t/yr 
• Approximately 26% of load collected in leachate collection system 

 
• Decommissioned groundwater collection system, reduction in treated load 

from 100 t/yr to 10 t/yr  

~65% reduction 
at VJ ST-2016 

~95% reduction in  
total load generated  

VJ – Acid Load Phase 2 



Oxygen Flux Net Percolation 

0.4 m Runoff From Site
1.52 mm

Drain-down

Net Percolation

0.4 m Till Growth Medium Cover Layer

Granular Drainage layer
HDPE Geomembrane

30-40 m

Oxygen < 1%, Decreasing With Depth
Low Net Percolation ~1 mm/yr

PAF Waste Rock
0 t/yr

Leachate Collection System

Passive Treatment System

VJ ST-2016

10 t/yr

1 t/yr

12 t/yr
0 t/yrMounding

0 t/yr
3 t/yr

10 t/yr

Calculated = 38 t/yr

Alkalinity

Groundwater

Alkalinity

-2 t/yr

1 t/yr

Grand Lake

Background

37 t/yr

100 years post-cover system prediction w/ passive treatment 
 Mounding contributes largest load  
 Total acid load reduced to ~38 t/yr  
 Understanding for long-term loading and outcomes 

without numerical simulations 
 

13 t/yr 38 t/yr 

VJ – Acid Load Phase 3 

 Total acidity lost over ~200,000 years 
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2002 2010 2011 2012 2013 2014 

Near Mid Far 

VJ ST-2016 

VJ – Solute 
 Transport 
(Sulfate) 

MP2016 



Risk – Holes In Geomembrane 
• Construction (wrinkles, tears, welds, punctures, ...) 
• Anthropogenic (e.g. artisanal mining) 
• Vegetation (roots, blow down, etc.) 
• Bioturbation 
• Service stresses (differential settlement, Δ temp) 

 
 
 
 

http://heapsolutions.com/applications/heap-liner-leak-detection/ 
O’Kane and Meiers 2014 



Risk – Influence of Holes 

O’Kane and Meiers 2014 

• Very Good Lateral 
Drainage Capacity: 
 … extend timeline 

•Service Life of  
Geomembranes? 
e.g. Benson et al 2011: 

  55-125 yrs 



Costs and Loading… and Risk 

Discount Rate (%) 
Collection and 

Treatment 
NPV 

 
Cover System 

NPV 

1.0  $ 29.5M   $ 16.1M  

2.5  $ 17.0M   $ 14.6M  

4.0  $ 11.2M   $ 13.8M  

Groundwater Collection System 
 Only Captured 40% of Basal Load 



Summary Discussion Points 
• Conceptual model used to develop understanding 

of loading from WRP 
• Unique site – heavily monitored 
• Strong conceptual model requires sufficient site 

information 
• Transition to passive treatment, load to receiving 

environment reduced. 
• Risk with long term performance 

 Geomembrane lifespan, holes 
 Minimize effect of holes with adequate lateral drainage. 
 NPV should be a tool to evaluate risk 



O'Kane Consultants Inc. 
Habitat for Humanity Initiative – El Salvador 

Thank You! 


