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The Case for Salt Marsh Restoration 
 Salt marshes, Bay of Fundy (Gordon, 

1989) 

 80 to 85% lost 

 Significant loss of species, habitat 
and productivity  

 Need for restoration 
 BUT  
 Restoration of tidal flow = changes to 

biogeochemisty = effects vegetation, 
nekton and other wildlife (Anisfeld, 2012) 

 Cheverie Creek was first monitored 
and planned restoration 
 Soil chemistry was not addressed 

Cheverie Creek at high tide 



Research Questions 

 How does sediment chemistry (sulfide, redox potential and salinity) 
and above ground biomass vary over the growing season?  

 How does hydrology, sediment characteristics and soil chemistry 
within a newly restored macrotidal salt marsh related to above 
ground biomass production?  



Salt Marsh Importance 
 Highly productive and lie at interface 

between land and ocean (Townend et al., 
2010; Butler and Weis, 2009) 

 Provide unique habitat (Allen, 2000; Townend 
et al., 2010) 

 Carbon sequestration, protection 
from storm surges and coastal 
erosion, (Townend et al., 2010; Chmura et al., 2003; 

Butler and Weis, 2009) and limit nutrient 
exchange between ocean and 
upland (Kostka et al., 2002) 

Cogmagun River restoration site at high tide 



Sediment 
 Organogenic vs. Minerogenic (Reddy 

and DeLaune, 2008) 

 Importance for salt marsh function 
(Reddy and DeLaune, 2008): 
 Foundation for platform development 
 Influences zonation of vegetation 

 Sediment deposition 
 Hydrology 
 Vegetation 
 Topography 
 

 
 

Cheverie Creek 



Biogeochemistry 
 Organic matter at the core (Reddy and 

DeLaune, 2008) 

 Oxidation and reduction reactions 
 Dominated by reduced forms (Reddy and 

DeLaune, 2008) 

 Controlled by:  
 Microbial communities, carbon supply 

(Teasdale et al., 1998; Craft, 2001; Fieldler, et al., 2007)  

 Temperature, pH, and concentration of 
electron acceptors (Reddy and DeLaune, 2008, 
Tiner, 1991)  

 

“Study of the exchange or flux of materials 
between living and nonliving components of 
the biosphere” (Reddy and DeLaune, 2008) 

Small waterfall in creek at Cheverie Creek 



Hydrology 
 Importance for salt marsh function: 
 Influences physiochemical environment, 

vegetation and transports sediment and 
nutrients (Mitsch and Gosselink, 2007) 

• Redox potential, saturation, salinity and 
nutrient cycling 

 Influenced by: 
 Tidal and ground water (Reddy and DeLaune, 2008; 

Wilson and Morris, 2012) 

 Tidal range 
 Geomorphology 
 Vegetation 

 

Cheverie Creek looking towards causeway 



Vegetation 
 Importance for salt marsh function: 
 Regulates carbon and nutrient inputs 

(Seliskar et al., 2002) 

 Provides oxygen to root zone (Seliskar et al., 
2002) 

 Assists in the stabilization of the 
sediment and amount of sunlight 
reaching the soil surface (Seliskar et al., 2002) 

 Distribution influenced by: 
 Hydrology 
 Sediment characteristics 
 Soil chemistry 
 Vegetation species 

 

Looking towards upland from creek edge at Cheverie Creek 



Spartina alterniflora: Uptake of Nitrogen 
 Chambers et al. 1998 
 unaffected by extremely high sulfide 

concentration 
 decreased with an increase in 

salinity 
 Koch and Mendelsshn, 1989; 

Mendelssohn and Seneca, 1980 
 decreased productivity and uptake 

with high sulfide concentrations 
Spartina alterniflora along Cheverie Creek 



Objectives 

 Determine appropriate depth for redox potential and salinity 
levels  

 Determine variation of sulfide concentration, salinity and redox 
potential, aboveground biomass, inundation time, and 
inundation frequency over the growing season 

 Determine indicators of aboveground biomass 



Study Area: Bay of Fundy 
 Macrotidal: up to 16 m in upper Bay 

of Fundy 
 Salt marshes minerogenic in origin 
 Substantial suspended sediment 

concentration and deposition in the 
intertidal zone (van Proosdij et al., 2010) 

 150 mgl-1 on the marsh surface  
 4000 mgl-1 in the upper reaches of the Minas 

Basin 



 

Cheverie Creek Salt Marsh Restoration Site 
 Historically dyked (Bowron et al., 2009) 

 Causeway blocks mouth of 
river 
 Bridge replaced with box culvert 

(1960) 
 Flap gate removed in 1980s 

 Upland and freshwater 
vegetation encroached over 
25 years (Bowron et al., 2009) 

 Prior to restoration 4-5 ha flooded → 
Culvert replaced (2005) → 43 ha 
flooded 

 

Bowron et al. 2013 

4.7 m2 32.6 m2 



Cheverie Creek: 7 years post restoration (2012) 
 Restoration was successful 
 Die-off of freshwater and terrestrial 

vegetation 
 Recolonization by early 

successional salt marsh species 
 Increase in nekton 
 Extensive panne system 
 

  
  
 

Panne network at Cheverie Creek 



Methodology 





Methodology 

Sulfide Concentration  
(Cline, 1969, Mora & Burdick, 2013) Salinity Redox Potential  

Aboveground 
Biomass 

Sediment 
Characteristics Root Depth 



Results: Pilot Study 



Above Ground Biomass 
 ANOVA on peak 

biomass (July 18, 2014) 

 No significant 
difference  (α: 0.05; p-
value: 0.196;  df): 2) 
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Redox Potential 

 Neap tides = higher 
redox 

 Spring tides = lower 
redox  

 Decrease in redox with 
depth 

 Significant difference 
 Drainage classes (α: 0.05; p-value: 

0.000; df: 2) 
 Neap versus spring tides (α: 0.05; 

p-value: 0.008; df:1) 
 Varying depth (α: 0.05; p-value: 

0.000; df: 3) 
 Depth and drainage class (α: 0.05; 

p-value: 0.000; df: 6) 
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Salinity 

 

 Spring tides = Lower 
salinity 

 Neap tides = Higher 
salinity 

 Decrease with depth 
 
 

 Significant difference 
 Drainage classes (α: 0.05; p-

value: 0.000; df: 2)  
 Neap versus spring tides (α: 0.05; 

p-value: 0.015; df: 1) 
 Varying depth (α: 0.05; p-value: 

0.000; df: 3) 
 Varying depth and drainage class 

(α: 0.05; p-value: 0.000; df: 6) 
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Sediment Characteristics 
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 Organic Matter 
 Highest found in the poorly drained sites 
 Decrease with depth in well drained sites 
 Similar pattern in moderately and poorly 

drained sites 
 

 Bulk Density 
 Significant difference with varying depth (α: 0.05; 

p-value: 0.002; df: 3) 

 Significant difference with depth and drainage 
class (α: 0.05; p-value: 0.029; df: 6). 
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Discussion and Conclusions 



Well Drained Sites 
 Low salinity levels 
 Dominated by oxygen and 

nitrate/manganese reduction 
 No sulfide 
 Decreasing organic matter and 

increasing bulk density with 
depth 

 Largest biomass values 
 



Moderately Drained Sites 
 Moderate salinity levels 
 Dominated by nitrate/manganese 

reduction 
 Minimal sulfide 
 Similar organic matter throughout 

and increasing bulk density with 
depth 

 Above ground biomass is similar to 
poorly drained sites 



Poorly Drained Sites 
 High salinity levels 
 Dominated by iron reduction 
 High sulfide level 
 Organic matter highest just below 

surface and bulk density increasing 
with depth  

 Smallest biomass values 
 

 



Conclusions 
 Soil chemistry directly impacts 

vegetation and vise versa 
 Spring and neap tide signal 
 Atlantic marshes differ from Bay 

of Fundy marshes 
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