Mass Flux-Informed Remediation Decision Making at One of Canada’s Most Polluted Sites

Tony Walker, PhD, EP
Devin MacAskill, MAS, PEng
Andrew Thalheimer, PEng
Daniel Smith, PhD
Long history of steelmaking in Sydney (1901-1988)

700,000 tons of coal tar released into Muggah Creek (Sydney Tar Ponds, STPs)

- PAHs
- Metals
- PCBs

Govt. scientists reported widespread contaminated sediment & biota in STPs & Sydney Harbour in 1980s

Remediation seen as solution
Numerous unsuccessful remediation attempts

In 2004, Govts. of Canada & NS announced a $400 m project to clean up STPs & Coke Ovens

STPs remediation consisted of solidification/stabilization (S/S) with cement

Previously *mobile* contaminants effectively *immobilised* from migrating into SH
Monitoring Effects of Remediation

- Environmental Impact Statement (EIS) & Joint Review Panel (JRP) concluded
 - “Remediation unlikely to cause significant negative environmental impacts with implementation of appropriate mitigation”

- Environmental Effects Monitoring (EEM) program designed to
 - Determine effectiveness of mitigation
 - Verify effects predictions made in EIS
 - Designed to assess positive / negative changes potentially attributed to remediation

- EEM program reviewed by key federal & provincial departments
 - GW monitoring
 - SW monitoring
 - Marine EEM Program
Marine EEM Program

- **Water Quality (WQ)**
 - 24h auto sampler
 - Water grabs (surface & near bottom)

- **Mussel Tissue**

- **Sediment Quality**
 - Sediment chemistry (grabs & traps)

- **Crab Hepatopancreas Tissue**

- **Benthic Community**
 - Inter-tidal (5 transects using quadrats)
 - Sub-tidal (sieve analysis for benthic invertebrates)

Detection of changes

- **Short term**

- **Long term**
Marine EEM Sampling

- **Spatial & temporal sampling**
- **Stations – 9-11**
 - Area 1 – Near-field
 - Area 2 – Mid-field
 - Area 3 – Far-field/reference
 - Area 4 – Sydney River Estuary
- **Sampling**
 - 2009 baseline
 - 2010 1st yr remediation
 - 2011 2nd yr remediation
 - 2012 3rd yr remediation
Sediment Quality: Grabs

- Grabs used for sediment sampling
- Surface sediments (0-1 cm) sampled annually at each station
- Sediments analysed for
 - PAHs
 - Metals
 - PCBs
 - TOC etc
Sediment Quality: PAHs

- Significant increase in PAHs in Yr 1
- Some agencies called for termination of remediation after 1st year (Premature?)
DFO CSAS strong concerns & EC even requested cessation of remediation activities!
Sediment Quality: PAH Increases?

- Calculated **Mass Flux** to determine release of contaminants from site
 - 3 yrs of mass flux
- Grabs & DFO gravity SLO-CORER compared
- Triplicate sampling to assess intra-station variation
- Other potential sources using LOE approach
 - Bulk coal storage facility
 - Uncovering events?
 - Ship propeller wash
Estimates of PAH Mass Flux to SH

- Contaminant mass flux techniques help understand “mobile” vs. “immobile” contaminants
 - Gibbs & Santillan (2009); Suthersan et al. (2010)
 - Flux-informed decision-making helps develop remediation end point goals aimed at reducing off-site exposure & risk
- Reviewed numerous historical flux studies at STPs
 - Government reports
 - ERA studies
- Performed our own mass flux study (3 yrs) during remediation at STPs
 - Dillon (2011, 2012 & 2013)
- Compared against independent engineers flux estimate
 - CRA (2011)
Assumptions for PAH Flux Estimates

- **Marine**
 - Δ conc. over 15 months (Jul 2009-Oct 2010)
 - Mean concs. calculated/m² for each area over 0-1 cm horizon
 - Surface area determined for each area

- **SW**
 - Mass loadings calculated for Jan-Dec 2010
 - SW flow data provided by STPA represents inputs to North Pond
 - Concs. based on outgoing tide samples collected within ~2 h of low tide
 - Loadings based on mean, min. & RDLs concs.
 - 20% increase in total flow added to account for overflow at South Pond & overland flow

- **GW**
 - GW from eastern shore of North Pond assumed to contribute mass discharge (5 wells)
 - Mean concs. from quarterly sampling events used (Mar, Jun, Sep)
 - Hydraulic gradient of 0.005 used based on 2010 GW contours
 - 2.5 m of plume (aquifer) thickness in intertidal zone assumed
Total PAH Accumulation

- Total PAH accumulation from 2009 - 2010
 - Area 1 – 363 kg
 - Area 2 – 916 kg
 - Area 3 – 469 kg
 - Area 4 – 189 kg

- Total PAH ~2000 kg !!!!
Sample Area

<table>
<thead>
<tr>
<th></th>
<th>Total Suspended Solids</th>
<th>Aluminum</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Copper</th>
<th>Lead</th>
<th>Mercury</th>
<th>Nickel</th>
<th>Zinc</th>
<th>Total PAH</th>
<th>Benzene</th>
<th>Arsenic</th>
<th>Lithium</th>
<th>Sulphate</th>
<th>PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Discharge for Surface Water (average)</td>
<td>1027310</td>
<td>22149</td>
<td>6</td>
<td>484</td>
<td>15290</td>
<td>1668</td>
<td>1.0</td>
<td>164</td>
<td>6962</td>
<td>58</td>
<td>--</td>
<td>206</td>
<td>3151</td>
<td>133150816</td>
<td>--</td>
</tr>
<tr>
<td>Mass Discharge for Surface Water (minimum)</td>
<td>96454</td>
<td>2845</td>
<td>1</td>
<td>48</td>
<td>116</td>
<td>68</td>
<td>0.6</td>
<td>154</td>
<td>246</td>
<td>0</td>
<td>--</td>
<td>30</td>
<td>92</td>
<td>4629797</td>
<td>--</td>
</tr>
<tr>
<td>Mass Discharge for Surface Water (RDL)</td>
<td>96454</td>
<td>241</td>
<td>8</td>
<td>48</td>
<td>96</td>
<td>48</td>
<td>0.6</td>
<td>145</td>
<td>241</td>
<td>22</td>
<td>48</td>
<td>29</td>
<td>48</td>
<td>96454</td>
<td>2</td>
</tr>
<tr>
<td>Mass Discharge for Groundwater</td>
<td>--</td>
</tr>
</tbody>
</table>

Calculated Mass Discharge to Sydney Harbour Year 3 (2012)

<table>
<thead>
<tr>
<th></th>
<th>Total Suspended Solids</th>
<th>Aluminum</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Copper</th>
<th>Lead</th>
<th>Mercury</th>
<th>Nickel</th>
<th>Zinc</th>
<th>Total PAH</th>
<th>Benzene</th>
<th>Arsenic</th>
<th>Lithium</th>
<th>Sulphate</th>
<th>PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1 Sediments</td>
<td>--</td>
</tr>
<tr>
<td>Area 2 Sediments</td>
<td>--</td>
</tr>
<tr>
<td>Area 3 Sediments</td>
<td>--</td>
</tr>
<tr>
<td>Area 4 Sediments</td>
<td>--</td>
</tr>
</tbody>
</table>

Calculated Mass Discharge to Sydney Harbour Year 2 (2011)

<table>
<thead>
<tr>
<th></th>
<th>Total Suspended Solids</th>
<th>Aluminum</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Copper</th>
<th>Lead</th>
<th>Mercury</th>
<th>Nickel</th>
<th>Zinc</th>
<th>Total PAH</th>
<th>Benzene</th>
<th>Arsenic</th>
<th>Lithium</th>
<th>Sulphate</th>
<th>PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1 Sediments</td>
<td>--</td>
</tr>
<tr>
<td>Area 2 Sediments</td>
<td>--</td>
</tr>
<tr>
<td>Area 3 Sediments</td>
<td>--</td>
</tr>
<tr>
<td>Area 4 Sediments</td>
<td>--</td>
</tr>
</tbody>
</table>

Calculated Mass Discharge to Sydney Harbour Year 1 (2010)

<table>
<thead>
<tr>
<th></th>
<th>Total Suspended Solids</th>
<th>Aluminum</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Copper</th>
<th>Lead</th>
<th>Mercury</th>
<th>Nickel</th>
<th>Zinc</th>
<th>Total PAH</th>
<th>Benzene</th>
<th>Arsenic</th>
<th>Lithium</th>
<th>Sulphate</th>
<th>PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1 Sediments</td>
<td>--</td>
</tr>
<tr>
<td>Area 2 Sediments</td>
<td>--</td>
</tr>
<tr>
<td>Area 3 Sediments</td>
<td>--</td>
</tr>
<tr>
<td>Area 4 Sediments</td>
<td>--</td>
</tr>
</tbody>
</table>

Trends between yrs 1, 2 and 3 Mass Flux

- **D** = Decreasing
- **PD** = Potentially Decreasing
- **S** = Stable
- **PI** = Potentially Increasing
- **I** = Increasing

Calculated Accumulated Mass in Sydney Harbour Year 3 (2012) Corrected for 12 months (e.g., change in concentration between July 2011 to July 2012)

Calculated Accumulated Mass in Sydney Harbour Year 2 (2011) Corrected for 12 months (e.g., change in concentration between October 2010 and July 2011)

Calculated Accumulated Mass in Sydney Harbour Year 1 (2010) Corrected for 12 months (e.g., change in concentration between July 2009 to October 2010)
Estimates of PAH Fluxes to SH

- **Previous (300-800 kg/yr)**
 - 1989: 767 kg/yr (Lane & Associates, 1991)
 - 2000 & 2001: 289 kg/yr (Lee et al., 2002)

- **During Remediation (<120 kg/yr)**
 - 2010: 97 kg/yr (Dillon, 2011)
 - 2010: 119 kg/yr (CRA, 2011)
 - 2011: 17 kg/yr (Dillon, 2012)
 - 2012: 56 kg/yr (Dillon, 2013)
Sediment Quality: PAHs

- **Significant increase in PAHs in Yr 1**
 - Some agencies called for termination of remediation after 1st year (Premature?)
- **Subsequent monitoring showed a continued decrease in PAHs**
 - Not significantly different from baseline
 - Within predicted ranges reported by Smith et al. (2009)
- **EIS prediction of no significant environmental impacts in SH confirmed?**
[PAH] Increases During yr 1

- **Onsite releases from remediation activities?**
 - A more localized sediment PAH signature expected
 - ~100 kg/yr PAHs estimated flux from STPs, considerably lower than ~800 kg/yr flux estimated by JDAC (2002) & much lower than would be required to cause PAH increases in yr 1 (2000 kg)

- **Large scale uncovering event of contaminated sediments?**
 - 5 major storms between July 2009 & October 2010
 - Ship propeller wash – but not at all sites?

- **Results from 2009 could have been “unusually” low?**
 - Burial from less contaminated shallow channel sediments

- **Other potential sources (eg. bulk coal storage facility)**
 - Although this facility was also present in 2009?
Sediment Quality: Metals

- Little apparent temporal variation
- EIS prediction of no significant environmental impacts in SH confirmed?

<table>
<thead>
<tr>
<th>Monitoring Year</th>
<th>Baseline</th>
<th>Yr 1</th>
<th>Yr 2</th>
<th>Yr 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>As concentrations in surface sediment (µg g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd concentrations in surface sediment (µg g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu concentrations in surface sediment (µg g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg concentrations in surface sediment (µg g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb concentrations in surface sediment (µg g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn concentrations in surface sediment (µg g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Heavy Metal(s) Lives On!
Contaminants in Various Media

<table>
<thead>
<tr>
<th>Media</th>
<th>Detection of Effects</th>
<th>PAH</th>
<th>PCB</th>
<th>As</th>
<th>Cd</th>
<th>Cu</th>
<th>Hg</th>
<th>Pb</th>
<th>Zn</th>
<th>JRP Significance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water quality</td>
<td>Short term</td>
<td>→</td>
<td>→/nd</td>
<td>→</td>
<td>↓</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>/nd</td>
<td>Not significant (Dillon 2013)</td>
</tr>
<tr>
<td>Blue mussels</td>
<td></td>
<td>→/nd</td>
<td>→/nd</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>↑/↑</td>
<td>Not significant (Walker et al. 2013b)</td>
<td></td>
</tr>
<tr>
<td>Surface sediment</td>
<td></td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>↓</td>
<td>→</td>
<td>→</td>
<td>↓/↓</td>
<td>Not significant (Walker et al. 2013c,d)</td>
<td></td>
</tr>
<tr>
<td>Rock crabs</td>
<td>Longer term</td>
<td>→/nd</td>
<td>↓</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>/nd</td>
<td>→/nd</td>
<td>Not significant (Walker et al. 2013a)</td>
<td></td>
</tr>
</tbody>
</table>

→ = Stable
↓ = Decreasing
↑ = Potentially increasing
nd = Not detected

Summary

- Only 17-97 kg/yr total PAH discharged in SW during 3 yrs monitoring
 - GW responsible for negligible quantities (0.002-0.005 kg/yr)

- Independent PAH flux study in yr 1 estimated 119 kg/yr (CRA, 2011)
 - Compared favourably to our 97 kg/yr estimate during same period

- PAH flux from STPs during remediation is in stark contrast to ~2000 kg loading in harbour sediment PAH concentrations during 2010

- Mass flux estimates during remediation was much lower than ~800 kg/yr PAHs discharged from STPs in 2001 (JDAC, 2002)
 - At same time, govt. studies demonstrated on-going reduction in PAH concs.
Summary

- This mass flux study informed remediation decision making by helping all stakeholders better understand “mobile” vs. “immobile” contaminants
 - Calls for termination of remediation by regulators was premature

- S/S remediation *immobilised* contaminants

- Flux results corroborated in a separate PAH forensic assessment which found a common source of PAHs for soils, marine & aquatic sediments
 - Specific PAH forensic assessment results will be discussed in a separate platform presentation at this conference