Mactaquac Aquatic Ecosystem Study (MAES)

Mactaquac Hydro-Electric Generation Station Renewal Project

Canadian Rivers Institute

- Created at the University of New Brunswick in 2001
- Centre of excellence in water sciences, management, and education
- Aquatic science needed to understand, protect and sustain water resources in Canada and abroad
- An international, open network of research collaboration hosted at UNB
- 19 Science Directors-3 countries

VISION: to make every river a healthy river

CRI's Research Priorities

- Innovative science to create a paradigm shift in river management
- Develop meaningful indicators and thresholds of change for river ecosystems
- Linking flow and biological processes in rivers
- Advancing monitoring & management practices

Project Summary

- MAES is a multi-year, whole-river ecosystem study
 - Phase 1 Modelling of the structure and function of a large river ecosystem
 → the first four years of study (ongoing 4 years NB Power / NSERC CRD grant)
 - Phase 2 "Construction" Manipulating flow, sediment transport, and the thermal regime (10 years)
 - Phase 3 Monitoring the river's recovery to a new state (10 years)
- Phase 1 Three key components:
 - (1) whole ecosystem; (2) fish passage; and (3) environmental flows
- Key outputs:
 - Deliverables to NB Power to support the Mactaquac Project planning of the project
 - Training of 49 HQP (Undergraduate, M.Sc., M.Eng., Ph.D. and PDF)
 - Dissemination of results to public and scientific community

MAES Management Team / Science Advisory Board

- Allen Curry
 Principal Investigator
- Gordon Yamazaki
 Project Manager
- Tommi Linnansaari
 Research Associate Co-Lead
- Wendy Monk
 Research Associate Co-Lead

Science Advisory Board

- Stuart Bunn, ARI/Griffiths
- Jeff Duda, USGS
- Loren Grieg, ESSA

MAES Project Team

- Dr. Donald Baird (Environment Canada and CRI)
- Dr. Karl Butler (UNB)
- Dr. Joseph Culp (Environment Canada and CRI)
- Dr. Katy Haralampides (UNB)
- Dr. John Hughes Clarke (UNB)
- Dr. Karen Kidd (UNB and CRI)
- Dr. Stephan Peake (UNB)
- Dr. André St-Hilaire (INRS and CRI)

Environnement Canada

MAES Collaborators

- NB Power
- Fisheries and Oceans Canada
- New Brunswick Department of Natural Resources
- New Brunswick Department of Environment
- Acadian Sturgeon and Caviar, Inc.
- Universität Stuttgart (Schneider & Jorde Ecohydraulic Engineering)
- Canadian Hydrographic Service
- Biodiversity Institute of Ontario (Dr. Mehrdad Hajibabaei)
- Mount Allison University
 (Dr. Felix Bärlocher)

Fisheries and Oceans Canada Pêches et Océans Canada

SJE Ecohydraulic Engineering, GmbH

MAES Project outline

- 1A.1 Defining the river environment (**3 projects**)
- 1A.2 River biomonitoring baselines and metric development (8 projects)
- 1B.1 Defining the reservoir environment (**6 projects**)
- 1B.2 Downstream water release (2 projects)

2. Fish Passage

 2.1 - 2.6 Atlantic salmon, striped bass, sturgeons, American eel, muskellunge (6 projects)

3. Environmental Flows

 3.1 - 3.4 Climate and future hydrological regimes, riparian zone insects, floodplain connectivity (4 projects)

Whole Ecosystem

Physical Baselines - River Bathymetry

- establish downstream bathymetry (MGS to Fredericton)
- 3D flow velocity (ADCP)
- interpolation of depth, sediment, and macrophytes density -"Biobase"
- LiDAR low flow

Mapping surveys

Downstream mapping – Bathymetry, Macrophytes, Sediments

Physical Baseline

Downstream - Mapping of habitat characteristics

Secchi depth

Reservoir Mapping

MVP drop locations - June 25th 2014

1B.1.3 Reservoir sediment composition, chemistry, and potential for downstream displacement

- Baseline data on sediment composition and contaminants are needed to model downstream effects
 - Sample sites in headpond selected based on bathymetry and sediment layering studies
 - Sample sites downstream of MGS
- Examine spatial variability and magnitude of contaminant and nutrient concentrations

Source: K. Kidd

Sediment Metals

DELFT 3D Models DELFT 3D Mesh - with Islands above Fredericton 60,420 grid cells

1B.2.2 Modelling predicted thermal regimes downstream during reservoir drawdown

- Watershed
 divided into subbasins of ~200
 km² based on
 watershed
 divides
- CEQUEAU grid formed by further subdividing this into whole squares of 100 km²

1A.2.1 River biotic structure

4.1 Metrics and Monitoring, 4.1.1 Fish Community CRD 1A.2 River Biomonitoring - Baselines & Metric Development

Fish community

1A.2.3 Structure and Function: Macrophytes

2.0 Fish Passage / Habitats Studies

<u>Passage</u>

<u>Habitats</u>

2.1 Reservoir transit and downstream approaches to a large dam by Atlantic salmon

- Navigation of headpond, and MGS approach is not well understood
 - Smolts (downstream) Vemco and HTI (dam face)
 - Kelts Post-Spawn Adults (downstream and upstream)

Acoustic Tracking Downstream

Striped bass, Atlantic & Shortnose sturgeons, Muskellunge, Atlantic salmon

VR2W receivers
 Acoustic Tagging

>75 Vemco V16-4x acoustic tags

Reproduction / Connectivity Issues

- No reproduction since 1970
- Do we have a native population?
- What are the population affiliations?

2.5 Near dam, spatio-temporal distribution of American Eel elvers

- Eel elvers are no longer reported arriving at MGS fish trap
- Use traps to study the spatiotemporal approach of elvers
- Identify migration bottleneck(s) using spatiotemporal information and the results of the hydrodynamic model

2.6 The ecology of muskellunge: *An introduced predator in the vicinity of a large dam*

- 18 muskies tagged
- 3 CART tags
- 10 Vemco V-16
- 5 Lotek MCFT2 tags

3.0 Environmental flows

3.2 Climate and future hydrological regimes

- Quantify trends for hydrological and thermal regimes (models and climate downscaling)
- ELHOA approach underway

NSERC 3.3 - Environmental and future flows with habitat implications for riparian insect species

- Two dragonflies
 - ✓ *Gomphus ventricosus* (Skillet Clubtail) <u>endangered</u>
 - ✓ *Ophiogomphus howei* (Pygmy Snaketail) <u>special concern</u>
- Beetle
 - ✓ Cicindela marginipennis
 (Cobblestone Tiger Beetle) –
 endangered
- 67 sites in GLM
 - Exuvia and paired environmental variables
 - Tiger beetles islands

Photos: Zoe O'Malley

Project summary

- Mactaquac will be the largest hydroelectric generating station ever removed or rebuilt worldwide
 - Project expected to create science, teaching and education products for the rapidly emerging science of dam renewal
- Creation of a template of approaches and methods
 - Will facilitate incorporation of aquatic ecosystem science into informed decision making and management for future hydropower projects
- Translating science into training and actions
 - Trained HQP (50+) in river science, civil/geological/geodesy and geomatics engineering will develop integrated, cross-discipline technical skills

