

## Management of Dredged Sediment in Atlantic Canada: Trials and Tribulations

**2016 Atlantic Reclamation Conference** 

**November 9, 2016** 

### Overview

- Background
- Characterization of dredged sediment
  - Common contaminants of concern
- Challenges
- Typical disposal options
  - At sea
  - On land
- Measures to mitigate risks



Reference: www.fisherynation.com



## Background – Why is it required?

 Majority of harbours in Atlantic Canada serve commercial fishing and aquaculture industries

Industrial harbours

Tide, waves and current cause harbour infilling

- Dredging is required to maintain access
  - Capital projects and maintenance
- → Dredging sustains local economy of many coastal communities



## Background - Challenges

- Dredging is <u>essential</u> for the maintenance of harbours
- Challenges:
  - Dredging projects are very expensive
    - \$10,000's to >\$1 Million
  - Costly and complex
  - Contractors can be difficult to find
  - Disposal options are hard to approve



## Background - Environmental

- Environmental and benthic conditions must be assessed
- Sediments are sampled and analyzed for a large suite of chemicals → disposal options determined based on results

Identify
Dredging
Need

Define Dredge Area / Volume Complete MSSP / UBHS

Assess Results vs Criteria Identify
Disposal
Option



## MSSP Analytical Program

| Analytical Parameters |                                 |
|-----------------------|---------------------------------|
| PAHs                  | SAR and Electrical Conductivity |
| TPH / BTEX            | Tributyl Tin                    |
| Total PCBs            | Glycols and VOCs                |
| Metals                | Leachable Metals (SPLP & TCLP)  |
| Total Cyanide         | Leachable PAHs (SPLP & TCLP)    |
| PCP                   | Grain Size                      |
| Dioxins and Furans    | Carbon Content                  |



### Common Contaminants of Concern

- PAHs;
- Metals;
- PHCs;
- PCDD/Fs;
- Other physical/chemical contaminants;
- Other organic contaminants; and,
- If inland, SALT

PAHs, Metals & PHCs ->

Account for 86% of

Contamination

**Encountered** 

Reference: FCSI Program

PAHs & Metals >

Substances Potentially
Considered as Background
Occurrences

Reference: NSE Contaminated Sites Ministerial Protocols



### Sediment Characterization - COCs

#### PAHs

- Sources
  - Creosote timbers used to construct wharfs
  - Natural sources (e.g. forest fires)
  - Urban run-off
- Leachate (SPLP and TCLP)
  - Leachate analysis completed on sediment with highest PAHs concentrations
  - Compared to applicable Groundwater, Surface Water & Landfill Guidelines
  - Exposure pathway assessment





### Sediment Characterization - COCs

#### Metals

- Sources:
  - Naturally occurring minerals (dissolved form or suspended particulate)
  - Corrosion or acid dissolution from anthropogenic sources
  - Paints and pigments
- Background vs. actual contamination
  - Background soils database for Atlantic Canada
    - Upstream Sources
  - Background sediment (where available)



### Sediment Characterization - COCs

- Petroleum Hydrocarbons and other COCs
  - Sources:
    - Harbour activity and boat operation (re-fuelling / spills)
    - On-land spills and run-off from the site / wharf
    - Urban run-off
      - PHCs tend to be site specific, however other persistent COCs (dioxins/furans, PC older pesticides etc) may have Regional i.e. not site-specific sources



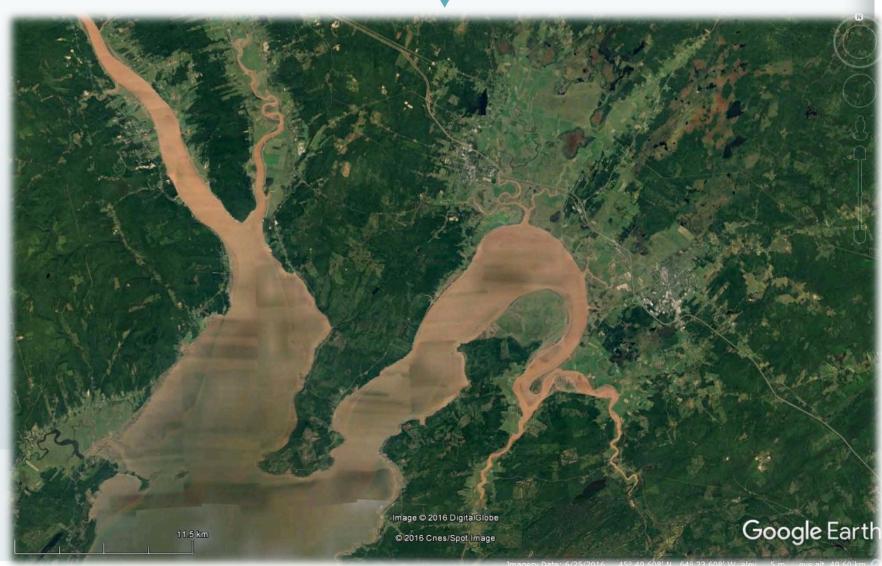
Reference: http://thechronicleherald.ca



### Common Contaminants of Concern

- Salt does not mix well with inland soils/plants or potable wells
  - Salinity
  - Sodicity (SAR)
  - Conductance (EC)






Reference: https://www.nps.gov/deva/index.htm



## Challenges

- Where does the sediment come from?
- Where does the "impact" come from?
- Is it contamination?
- Is it background?
  - Metals
  - PAHs



## Challenges

- Determining the source
  - Point source vs non-point source → is site cleanup required?
- Determining disposal options
  - Are previous ones still available?
  - On-site is there room?
  - Off-site cost
  - Approval (municipal, provincial, federal)



## Challenges

#### Perception

- It's contaminated! (sort of)
- How bad is salt?
- Is it safe?
- But it has been done before without issue...








#### **Disposal at Sea**

- Side casting
- Open water disposal



Reference: US EPA

#### **Beneficial Use**

- Construction aggregates
- Beach nourishment
- Land creation

#### **Disposal on Land**

- Federal property
- Private property
- Landfill
- Soil Treatment Facility



#### **Disposal at Sea**

- CEPA Disposal at Sea Regulations (Environment Canada)
  - Cadmium, Mercury, Total PAHs, Total PCBs guidelines
- Approval process
  - DAS Permit required
  - Disposal area must be vetted and approved



CONSOLIDATION

CODIFICATION

Disposal at Sea Regulations

Règlement sur l'immersion en

SOR/2001-275

DORS/2001-275

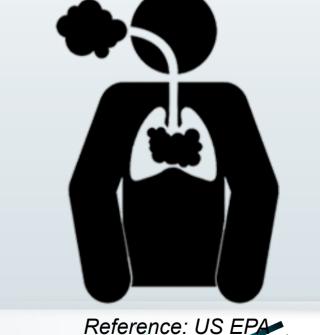


- Disposal on Land
  - Federal property
  - Private property
    - **Meet Provincial and Federal guidelines**
    - Measures to mitigate risks to receptors



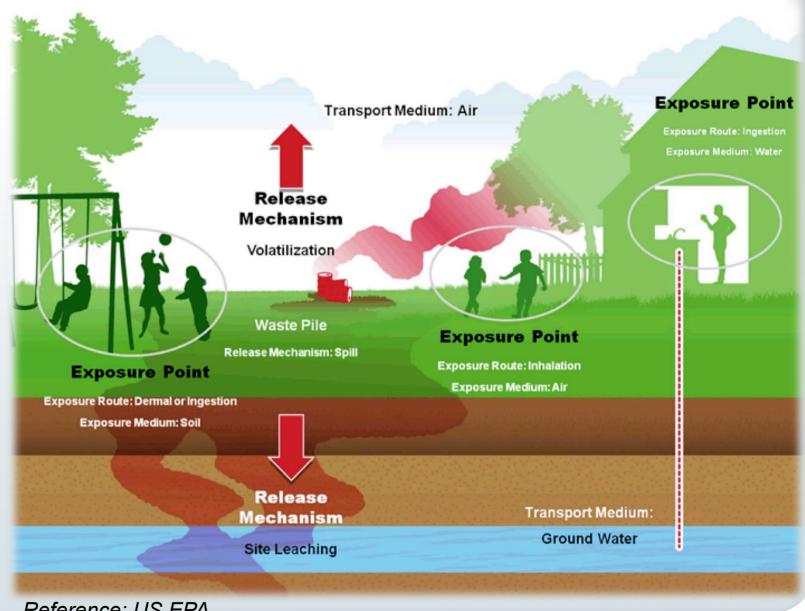
Former dredged sediment disposal area on private property

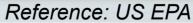



- Disposal on Land
  - Private property
    - Applicable Guidance Document:
      - New Brunswick Guideline for Siting and Operation of a Dredging Material Disposal Site on Land (NBDELG, September 2011)
        - » Set-back distances
        - » Preference given to disposal sites located within saltwater intrusion zones
        - » Measures to reduce erosion and surface water runoff



- Disposal on Land
  - Landfill
    - Landfill guidelines
    - Typically the second highest cost option
  - Soil Treatment Facility
    - Typically the highest cost option only considered for highly impacted sediments





- **Soil Contact** 
  - Pathway mitigation rarely required for contact or inhalation
  - **Mitigation Measures:** 
    - Dredged sediment is typically bermed and capped (primarily for runoff)
      - control)
    - Fence area to eliminate ecological contact
    - Required setback distances
    - > Pathway is eliminated once capped





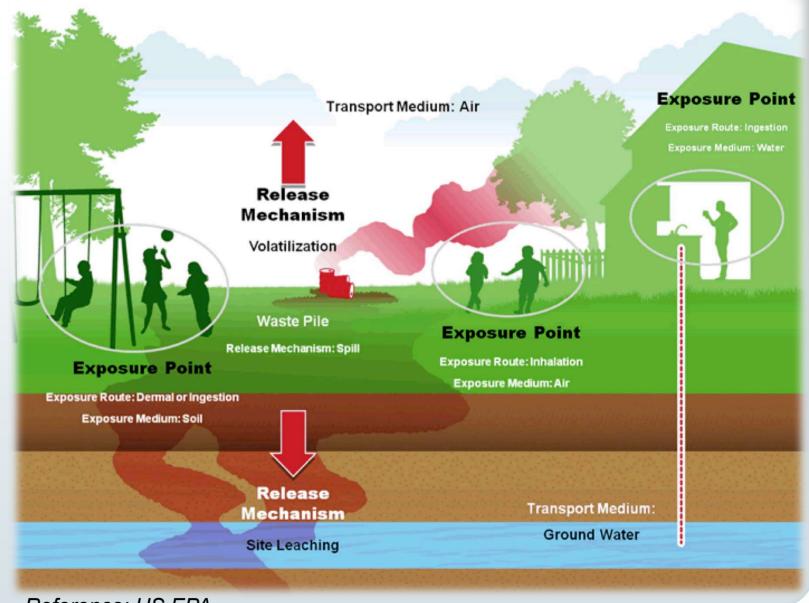
- Soil Leaching to Water and Run-off
  - Leachate results used to screen
  - Freshwater:
    - SALT is primary concern
  - Marine and Freshwater:
    - Sediment run-off concerns
  - Mitigation Measures:
    - Berm and cap dredged sediment
    - Add calcium amendment for SAR
    - Required setback distances







- Surface Water Pathway
  - Sediment run-off
  - Chemical leaching and run-off
  - SALT run-off
  - Mitigation Measures:
    - Berm and cap dredged sediment
    - Add calcium amendment for SAR
    - Required setback distances




Ref: http://beta.asoundstrategy.com/sitemaster/userUploads/site300/stream



#### **Groundwater Pathway**

- Leachate results used to screen
- Is the proposed disposal site potable?
  - Yes: place material topographically downgradient from well in accordance with appropriate setback distances
  - No: consider off-site potability



Reference: US EPA



### Summary

Identify Dredging Need

Define Dredge Area / Volume

Complete MSSP / UBHS

Assess Results vs Criteria

Identify Disposal Option

Assess results in comparison to applicable guidelines <



- Identify receptors at proposed disposal sites
- Evaluate exposure pathways
- Identify appropriate mitigation measures
- Seek approval



# Thank-you!

Brad MacLean, B.Sc., M.Sc. & Rebecca Appleton, P.Eng. **Dillon Consulting - Halifax** 

