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Wetlands: Key Components

Woater

Panne at Cheverie Creek (C.Skinner, 2014)

Vegetation

Soil




Influenced by tidal and ground water
(Reddy and Delaune, 2008; Wilson and Morris,
2012)

Influences physiochemical
environment, vegetation and

transports sediment and nutrients
(Mitsch and Gosselink, 2007)

* Redox potential, saturation,
salinity and nutrient cycling

Hydrology

Biogeochemistry

Regulates carbon and
nutrient inputs

Provides oxygen to root
zone

Assists in the stabilization
of the sediment and
amount of sunlight * Influences zonation of

reaching the soil surface vegetation (Reddy and
(Seliskar et al., 2002) Delaune, 2008)

» 3

* Organogenic vs.
Minerogenic

* Foundation for platform
development

Vegetation




Biogeochemistry of Salt Marshes
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Morphology of Spartina alterniflora

» Noticeable variation in Influenced by Salinity
morphology and height (Morris environmental factors Flooding
1980; Teal, 1962) (IS;;E)kar et al,, 2002; Burdick et al, Sulfide concentration

Nitrogen concentration
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Appropriate Drainage /
Elevation ‘ ‘ t t

Uptake of Above-ground
Nitrogen Biomass of Sp. alt
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Stability of Alteration of Rein'Froduction of
Marsh Sediment Tidal Water
Platform Chemistry
Impact
Vegetation

? ? Recolonization ? ?

Rationale

- Studies conducted in New
England & the UK to determine
impact abiotic factors had on

biomass production (Tempest et al.,
2015; Portnoy, 1999; Mora and Burdick,
2013a,b)

- Has not been conducted in a
high suspended sediment
concentration, hypertidal (>8 m

tidal range) system



Research Question g
» How do hypertidal minerogenic salt marsh \
ground biomass production over the growing season! \



Study Area




Cheverie Creek Salt Marsh Restoration Site

» Hypertidal — 16 m tidal range
» Historically dyked (Bowron et al,, 2009) il
» Tidal restriction caused by box culvert (1960) New Brunswick
» Upland and freshwater vegetation : ' Q
encroached over 25 years (Bowron et al., 2009) : e, *Cth
S SRS Restoration

» Prior to restoration 5 ha flooded — Culvert replaced P ot ;
(2005) — 43 ha flooded s ML S
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Cheverie Creek: 7 years post restoration (2012)

» Restoration was successful

Die-off of freshwater and terrestrial
vegetation

Recolonization by early successional
salt marsh species

Increase in nekton
Extensive panne system
» However

Soil chemistry not included

Panne network at Cheverie Creek (C. Skinner, 2014)



Methods




Pilot Marsh Study:

= Sample Locations = 9

= Replicates =2

* Number of Sampling Days = 6
= Total: 108

Marsh Extent Study:

= Sample Locations = 42

= Replicates = 3

= Number of Sampling Days = 2
= Total: 252

Pilot/Main Study
Main Study

Tide Levelogger

Barologger
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Methodology

Sulfide Concentration
(Cline, 1969, Mota & Burdick, 2013) ' Salinity
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Sediment Characteristics




Redox Potential

MY )
Conducting redox potential measurements Millivolt meter, platinum tipped probe & Calomel
(E. Keast, 2014) reference electrode (C. Skinner; 2013)

» Indicate intensity of anaerobic conditions
within soil (de la Cruz et al, 1989)

» Represent dominant redox reduction at
that time (Reddy and DeLaune, 2008)
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Results & Discussion

Over the Growing Season




Above-ground Biomass

Biomass (g-cm )
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» ANOVA on peak biomass
(July 18,2014)

No significant

difference (a:0.05; p-value:
0.196; df: 2)

Spartina alterniflora along Cheverie Creek
(C.Skinner,2014)

Error bars = Standard error
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Redox Potentlal
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Neap tides = higher redox;
more decomposition
Spring tides = lower redox;
decrease decomposition

Decrease in redox with
depth

»  Significant difference

Drainage classes (& :0.05; p-value: 0.000;
df:2)

Neap versus spring tides (& : 0.05; p-value:
0.008; df:1)

Varying depth (@ :0.05; p-value: 0.000; df:
3)

Depth and drainage class (& :0.05; p-value:
0.000; df: 6)

Error bars = Standard error
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Salinity
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Drainage classes (& :0.05; p-value:
Neap versus spring tides ( ¢ :0.05; p-
Varying depth (& :0.05; p-value:

Varying depth and drainage class (&:
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£ 10 E_% salinity 0.000; df: 2)
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. » Decrease with depth
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Sediment Characteristics
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» Organic Matter
Highest found in the poorly drained sites
Decrease with depth in well drained sites

Similar pattern in moderately and poorly
drained sites
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» Bulk Density

Significant difference with varying depth («:0.05; p-
value: 0.002; df: 3)

Significant difference with depth and drainage class
(a:0.05; p-value: 0.029; df: 6).

Error bars = Standard error



Drainage

Class
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Poor
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Above-
ground
Biomass

Largest

Similar to
Poor

Lowest

Minerogenic marshes have been found to

have high concentrations of iron and
manganese (Reddy and Delaune, 2008, Hung

and Chmura, 2006).

Si Delaune, 2008)
formation

inert (Schoepfer, et al., 2014).

* Buffer the redox potential (Reddy and
* Limits ability of phyototoxin

* [ron bonds with sulfide to render it

—Spartna patens X SImiar
Juncus gerardii Well

o

Exceedance of ImM of sulfide
would impact nitrogen uptake

for Spartina alterniflora (Koch
et al., 1999)
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Similar
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Results & Discussion
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What influenced above ground biomass production!?




PCA and Backwards Stepwise Regression
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Factor 3
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Factor Loadings Plot

Inundation Frequency/ Time

» Above-ground Biomass Production

Water Content

& Organic Matter

Salinity & Sulfide

T

ntrationNE

Redox Potential

Bulk Density

Biomass

R2=10.179
SE = 0.664

p-value =
0.021

Positive Relationship
Bulk Density

Redox Potential

Negative Relationship
Water Content
Organic Matter
Salinity

Sulfide Concentration

Effect Coefficient Standard

Error
Constant -2.949 0.102
Pl -0.199 0.104
P2 -0.227 0.104

Standard
Coefficient
0.000

-0.279
-0.318

P

0.000
0.062

0.035



Implications for Restoration: Case of Cheverie Creek

Elevational Woater
Plateau Pooling

Microbial
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Large panne between line 3 & 5 (C.Skinner, 2014)
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Conclusions and Future Directions
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Conclusions

» Variables associated with panne formation
Lowest above-ground biomass production

Highest salinity/sulfide
Low redox potential
» Sediment characteristics can predict soil chemistry

High organic matter — low redox and high sulfide concentration
— decline in above-ground biomass

Future Directions

» Quantify iron and manganese in Atlantic and Bay of Fundy
marshes

Great blue heron in panne system at Cheverie
(C.Skinner, 2014)

» Incorporation of salinity loggers in groundwater wells

» Expand study to incorporate Atlantic, and Northumberland
Strait marshes

» Conduct study over multiple growing seasons at multiple sites

29
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