

Dr. Emily Chapman,

Department of Environmental Science, St Mary's University

Project Details

First project to assess Se additives for effect on the mobility, bioaccumulation and toxicity of As and Hg in soil/tailings

 Collaboration - Saint Mary's University (Dynamic Environment & Ecosystem Health Research)/Amec Foster Wheeler Infrastructure and Environment

Project funded by NSERC Engage (6 months)

Gold mining in Nova Scotia

64 gold mining districts in Nova Scotia

Hg amalgamation - used for gold extraction in the 1800s and early 1900s, prior to the development of cyanidation as a gold recovery method.

The remaining sand-like substance; tailings typically dumped into low-lying areas or lakes and streams near the mine.

Gold mining in Nova Scotia, cont.

- Approx. 3 million tonnes of tailings were generated in NS between the 1860s and 1940s
- Tailings contain average concentrations of Hg and As 140 and 340 times background levels, respectively posing a threat to human health and the environment.
- Receiving environments of concern; terrestrial ecosystems, groundwater, wetlands, lakes, rivers, estuaries and re-emissions to air.

Toxic mode of action – Hg and As

- Due to high affinity for sulphur and selenium (Se), Hg and As bind to sulfhydryl, thiol and selenocysteine groups of critical proteins, inhibiting their function
- Hg—Se binding affinity is a million times stronger (stab. coef. 10⁴⁵) than Hg—S (cinnabar, HgS) (stab. coef. 10³⁹)
- Hg and Se form mercury selenide (inert).
- As and Se in vivo formation and biliary excretion of the seleno-bis (S-glutathionyl) arsinium ion, [(GS)₂AsSe].
- Hg and As induce selenium deficiency. This deficiency can be replenished if more selenium is provided with As and Hg exposure.

Why selenium to limit risks of Hg and As?

Se appears to be able to limit risks of As and Hg:

- By limiting bioavailability and mobility in receiving environments
- By increasing excretion of these elements from organisms
- By translocation of these elements in plants

More on selenium...

The range between Se's essentiality and toxicity is narrow....

- Minimum concentration in soil required if feed crops are to provide animals with adequate amounts of Se: 0.45 mg/kg
- CCME soil guideline value (agricultural/residential/parkland properties): 1 mg Se/kg
- Natural concentrations of Se in Canadian soils range between 0.3-4 mg/kg

Specific research questions for pilot project:

- Do Na₂SeO₃ additions change the toxicity of Hg and As in plants exposed to the soil/tailings?
- Do Na₂SeO₃ additions change the bioaccumulation of Hg and As in earthworms exposed to the soil/tailings?
- What is the most appropriate dose of Na₂SeO₃ additive to prevent Se, Hg and As leaching from the soil/tailings and still avoid toxic side-effects from elevated Se itself?

ARSENIC

MERCURY

Arsenic is a highly toxic element commonly used in rat poisons.

Mercury is a deadly liquid element that causes damage to the nervous system.

Site visit, sampling and experimental set-up

□ Plant toxicity tests

Emergence of grass seedlings each week

Artificial soil and selenium treatment concentrations in tailings (0-15 mg Se/kg)

Plant parameters (biomass, emergence and root length) vs added selenium

Grass shoots (%) effected by chlorosis (yellowing) in selenium treated material

Leachate – analysis of dissolved concentrations of As, Hg and Se

(a) Average concentration of As and Hg in leachate for each Se treatment concentration (n=3). The graph within the square is expanded to (b) to show the detail for trends between treatments 0 mg-1 mg Se/kg.

Concentration of Se in leachates (ug/ml) in comparison with concentrations of added selenium to the tailing material (mg Se/kg)

Worm Hg and As bioaccumulation test

Segmental swelling and blisters on worms in untreated tailing material

(a) shows accumulated As concentrations in worm tissue (mg/kg) after 8 days in relation to added selenium concentrations (mg/kg) in the tailing material. The graph within the square is expanded in (b) to show details for selenium treatment concentrations between 0-3 mg/kg

Concentrations of Hg and As in the tailing material of the different treatments

Sample ID	ASA	ASB	ASC	T1A	T1B	T1C	T2A	T2B	T2C	ТЗА	ТЗВ	T3C	T4A	T4B	T4C	T5A	T5B	TSC	T6A	T6B	T6C	CCME*
Added Se (mg/kg)	0	0	0	0	0	0	0.5	0.5	0.5	1	1	1	3	3	3	8	8	8	15	15	15	1 (2.9)
Se (mg/kg)	0.4	0.3	0.3	0.8	0.3	0.3	1.7	1.7	1.3	1.8	1.6	2.0	3.5	3.3	3.9	8.5	7.9	9.1	15	15	16	
Hg (mg/kg)	0.02	0.01	0.03	78	50	28	84	42	79	87	175	76	38	73	51	96	100	57	46	84	175	6.6 (50)
As (mg/kg)	2.5	<2.0	<2.0	1100	1200	1600	1300	1100	1100	1200	1100	1000	1000	1100	1300	1600	1100	1100	1500	1100	1400	12 (12)

^{*}CCME guideline for residential/parkland properties. Guideline for industrial sites has been provided in parenthesis

Hg concentrations in worm tissue vs added Se in tailings

- Despite thorough mixing, concentration of Hg was different in the different treatments and replicates confounding the effects of the selenium treatments on Hg accumulation in worms
- When different Hg tailings concentrations were accounted for in a multiple regression, Hg concentration in worm tissue was significantly decreased with increasing Se treatment concentrations (R²=0.40, p<0.05)</p>

Conclusions of study

- Na₂SeO₃ additions decreased toxicity of the arsenic and mercury in the tailing material to grass.
- Although confounded by different [Hg] in the different treatments, sodium selenite additions significantly limited [Hg] accumulated in earthworms.
- [As] in the worms were also negatively related to the [Na₂SeO₃]-up to 3 mg Se/kg. With higher [Na₂SeO₃], [As] in worms increased again.
- Leachate [Hg] and [As] from the Se-treated tailing material decreased drastically in the 1 mg Se/kg treatment, by 94% and 71% respectively.
- [Se] in the leachate increased from an average of 3 ug Se/L (in non-treated tailings) to an average of 10 ug Se/L (in the 1 mg Se/kg tailing material).

Potential future research directions

- Potential effects of Se treatments in receiving water bodies
- Other potential cost effective Se additives
- \square Se/As/Hg solid phase and aqueous phase speciation.
- Controlled field trials/mesocosms to assess effectiveness of Se additive under field conditions. Is more than one application needed over time?
- Se additions as a way to improve revegetation of the sites (research currently underway)

Questions/Comments?

For more information, refer to:

Chapman, E., Berry, J., Robinson, J., Campbell, L.M., 2016. Can a low dose selenium (Se) additive reduce environmental and health risks of mercury (Hg) and arsenic (As) in old goldmine tailings? Water Air and Soil Pollution 227:216, 1-17.

Contact details for Dr. Emily Chapman:

Emily.Chapman@smu.ca