AECOM

ARC 2016 November 8-9, 2016 Halifax, Canada

A Summary of Best Available and Emerging Treatment Technologies for Treating Poly- and Perfluoroalkyl Substances

Katherine L. Davis, PhD November 9, 2016

Background

Studied Technologies

Available/Commercial Technologies

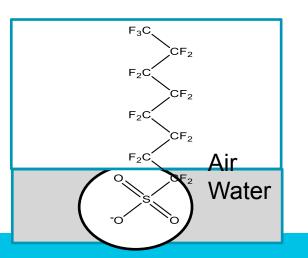
Developing Technologies

Summary

Q&A

What are PFAS Compounds?

- Class of synthetic chemicals used in manufacturing fluoropolymers
 - PFOA perfluorooctanoic acid and its principle salts, manufactured from 1947-present, 8 manufacturers phased out production by 2015
 - PFOS perfluorooctane sulfonate, manufactured from 1949-2002
- Used in many articles of commerce
 - Typically only a fraction of final product/not an end product
- Aqueous film forming foam (AFFF)

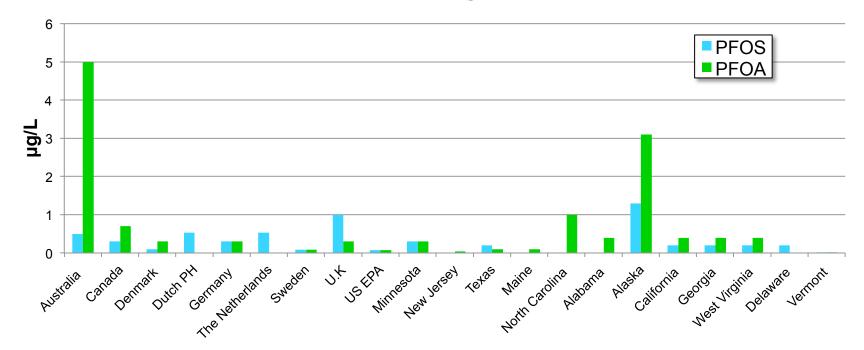


Unique Chemistry

- C-F bond is the shortest and strongest bond in nature
- Few degradation processes: too much energy to break bonds
 - · stable in acids, bases, oxidants, heat
 - microorganisms cannot gain energy from breaking the bond

 Perfluorinated = all carbon atoms fully fluorinated (no hydrogen atoms)

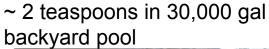
PFOA (perfluorooctanoate)


Polyfluorinated = some carbons are not fully fluorinated (have H)
 (Poly)fluorotelomer sulfonate (FtS)

PFAS Properties

Chemical Properties	PCB (Arochlor 1260)	PFOA	PFOS	TCE	Benzene
Molecular Weight	357.7	414.07	538	131.5	78.11
Solubility	0.0027 mg/L @24°C	3400–9500 mg/L @25°C	519 mg/L @20°C	1100 mg/L @ 20°C	1780 mg/L @20°C
Vapor Pressure (25°C)	4.05x10⁻⁵ mmHg	0.5-10 mmHg	2.48x10 ⁻⁶ mmHg	77.5 mmHg	97 mmHg
Henry's Constant	4.6x10 ⁻³ atm-m ³ /mol	0.0908 atm-m³/mol	3.05 x10 ⁻⁶ atm-m ³ /mol	0.0103 atm-m ³ /mol	0.0056 atm-m ³ /mol
Organic Carbon Part. Coeff. (Log K _{oc})	4.8-6.8	2.06	2.57	2.42	2.15

PFOS & PFOA Drinking Water Thresholds

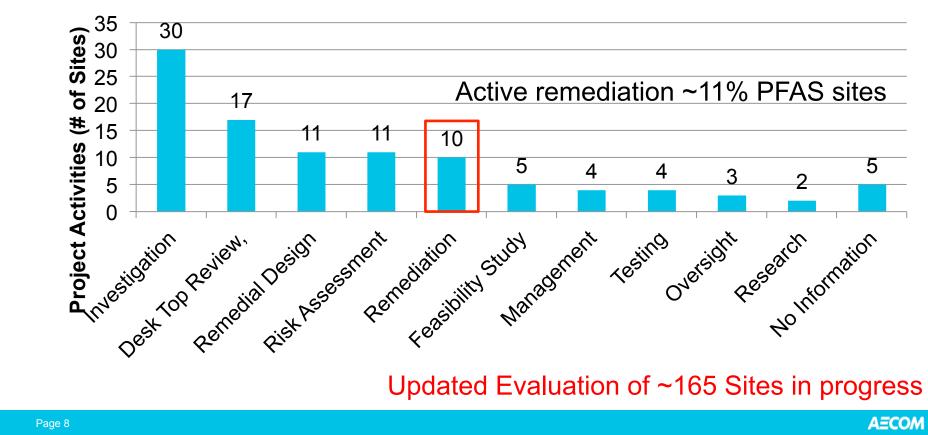


US EPA Lifetime Drinking Water Health Advisories

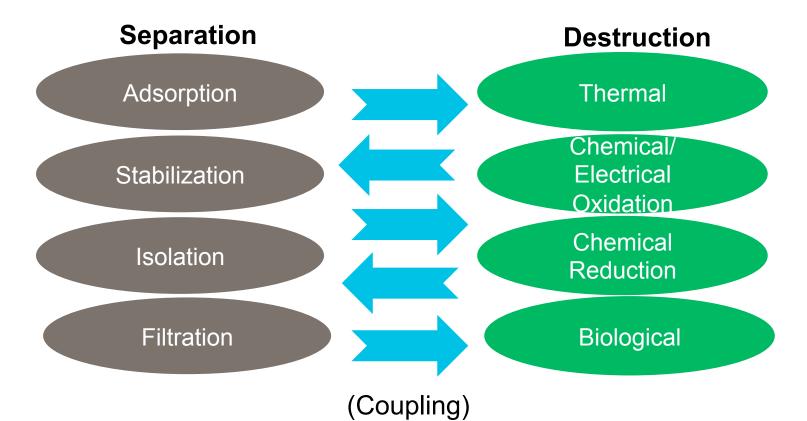
- 5/19/16 EPA Lifetime Drinking Water Health Advisories
 - 70 parts per trillion PFOS, PFOA, PFOS+PFOA
- Not promulgated/enforceable standards
- 70 ppt = 70/1,000,000,000,000

A Sense of Scale

AECOM

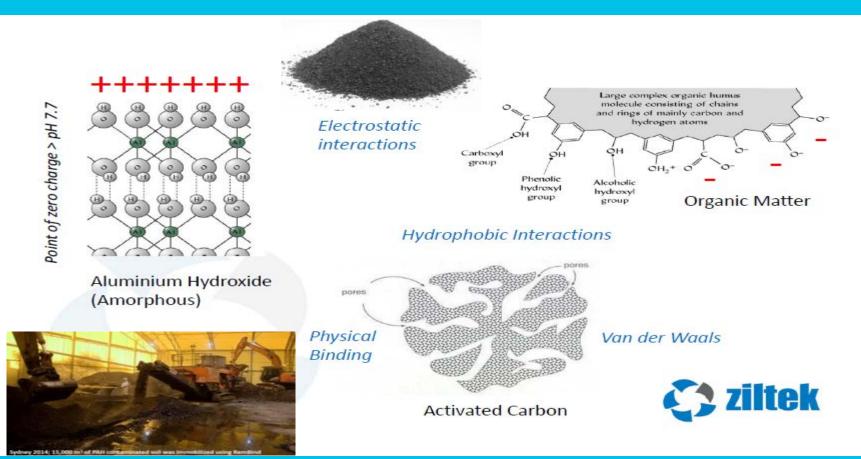

~44 gallons into 625 billion gallon Lake Winnipesaukee

World Population = 7.4 billion ~ 1 person / 2 world populations


85 PFAS Sites Under Different Project Stages (AECOM, 2015)

Updated Evaluation of ~165 Sites in progress

Treatment Technology Approaches

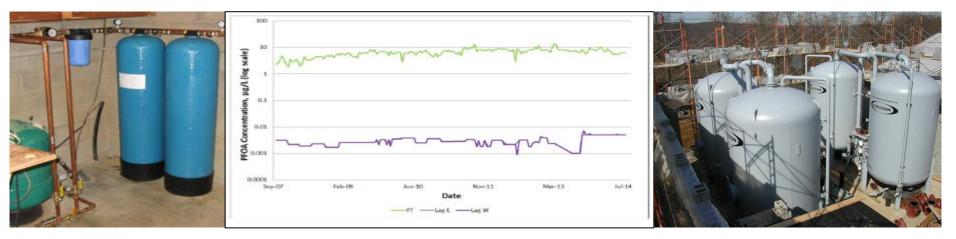


AECOM

Short List of Technologies that Have Been Studied

Ex-Situ	In-Situ		
 GAC RemBind Ion Exchange Resin Modified Zeolites Coagulation/Electrocoagulation Reverse Osmosis Nano-/Ultra- Membrane Filtration 	Separation (e.g., capping) PlumeStop Phytoremediation		
 Thermal Oxidation Advanced Oxidation Sonochemistry Electrochemical 	Destruction Image: Chemical Oxidation Image: Chemical Reduction Image: Chemical Reduction Image: Ch		

Full Scale Soil Treatment - RemBind®

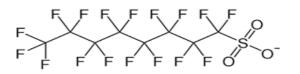


Page 11

Full-Scale GAC Treatment for PFOA

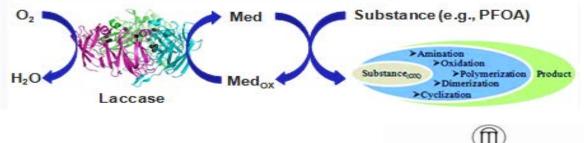
- Remedial decision based on detailed CSM, EPC determination and annual average PFOA intake by the residents
- GAC is proven effective for PFOA treatment
- Probably not as effective for short chain PFAS

150 Private GAC Systems Full-scale PFOA GAC Treatment System

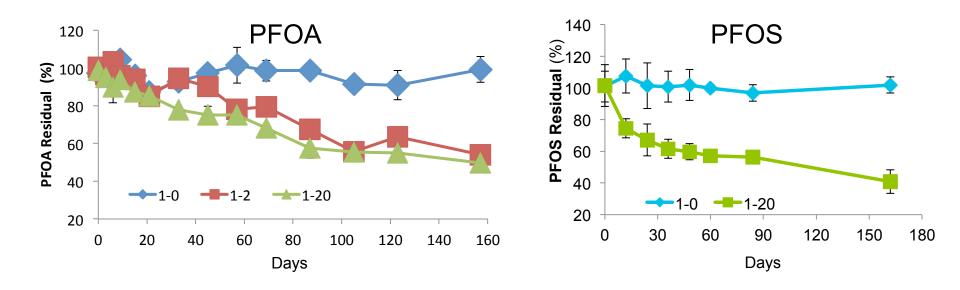

9 Public Water Supply GAC Systems

Ion Exchange Resin for PFAS

- Synthetic resins remove various contaminants from liquids, vapor or atmospheric streams
- Combined ion exchange/adsorption mechanism
- Potential for indefinite reuse via regeneration
- Regeneration with solvent-brine solution
 - High concentration salt dislodges PFAS molecules
 - High concentration solvent desorbs PFAS molecules
 - Waste disposal high PFAS in solvent, brine paste
- Advantage over GAC effective on short chain
 PFASs that are of increasing potential concern


Technologies/Innovation Development by AECOM

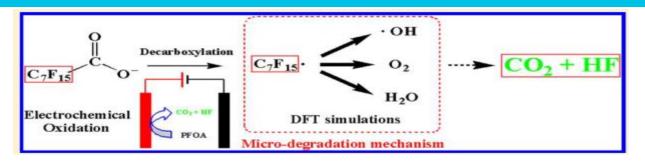
- Introducing the concept of "ambient/background" levels into the current and future debates on PFAS
- Plant uptakes of PFAS
- New low-cost sorbents
- Optimize GAC effectiveness
- New PFAS destruction technologies


Enzyme Catalyzed Oxidative Coupling

- Enzyme Catalyzed Oxidative Coupling (ECOC) is a process inspired by how natural organic matters are broken down naturally through enzyme catalyzed oxidation process
- ECOC to treat PFASs was originally developed for treatment of other persistent organics (PCBs, PAHs)
- White rot fungi are unable to survive in subsurface, not applicable for in-situ remediation, but fungi-produced enzyme can be concentrated and engineered for remediation
- Common enzymes:
 - Lignolytic enzymes
 - Peroxidases
 - Phenoloxidases
 - \circ Laccase

The University of Georgia

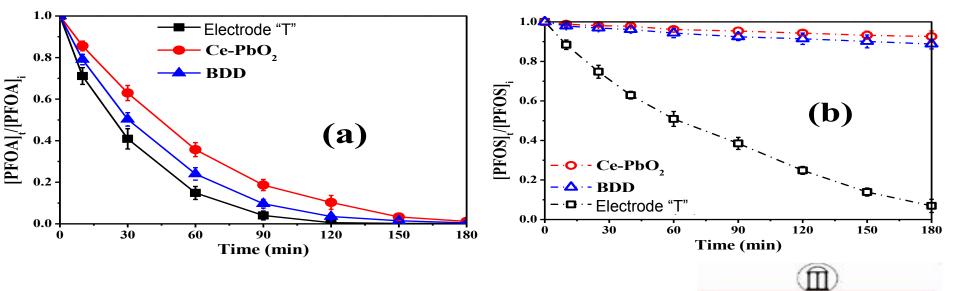
Enzyme Catalyzed Oxidative Coupling


pubs.acs.org/journal/esticu

Laccase-Catalyzed Degradation of Perfluorooctanoic Acid

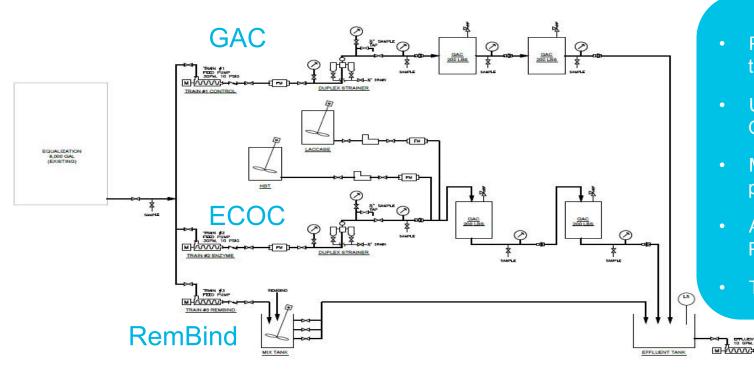
Qi Luo,[†] Junhe Lu,[‡] Hao Zhang,[§] Zunyao Wang,^{||} Mingbao Feng,^{||} Sheau-Yun Dora Chiang,[±] David Woodward,[#] and Qingguo Huang^{*,†}

Electrical Oxidation


- Electrodes
 - SnO₂
 - Sb-SnO₂ Not effective for PFOS
 - PbO₂
 - Ce-PbO₂ ____
 - Ti/RuO₂
 - Boron Doped Diamond (BDD) Effective for PFOS and PFOA, but results are not consistent or repeatable, not cost effective for scale up applications
 - Electrode T Effective for PFOS/PFOA, cost effective scale-up applications available

Electrode "T" for Destruction of PFOA and PFOS in Water

PFOA



The University of Georgia

Pilot Testing Multiple Technologies – AFFF Impacted Site

- Pilot-scale treatment trains
- Up to 6 months of Operation
- Multiple sampling points
- Analyzing for 100s of **PFASs in samples**
- **TOP** analysis

10 GPML 105

Summary – Take Home

- PFASs are soluble, recalcitrant and may form large dilute plumes
- Rapidly evolving science & regulatory environment
- Limited commercially available/demonstrated technologies
- Stabilization, capping or excavation/disposal are best soil options
- GAC or lon exchange resins are best water options
- Significant R&D ongoing promising and challenging
- PFAS Water treatment success will likely be ex-situ and require expensive treatment trains and long term pump and treat

katherine.l.davis@aecom.com

ARC 2016 November 8-9, 2016 Halifax, Canada

1. 7/10

ANT AL