AECOM

ARC 2016 November 8-9, 2016 Halifax, Canada

Hydrology and Hydrogeology Assessments of Boat Harbour, Nova Scotia

Randy Pointkoski, P.Eng. and Nora Doran, P.Geo. November 9, 2016

Overview

- Introduction
- Hydrology of Boat Harbour
 - Model Approach
 - Model Predictions

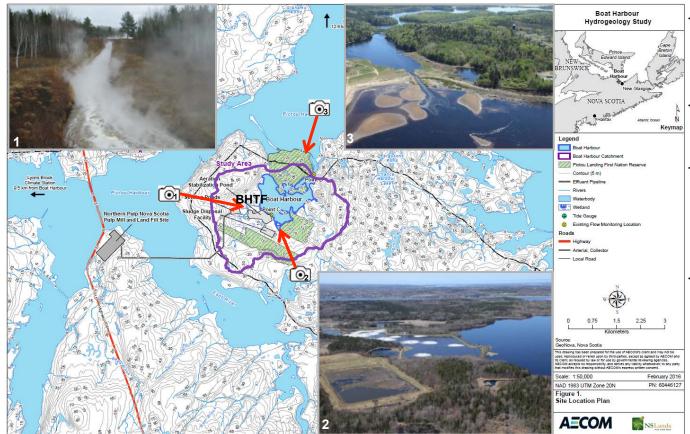
 Remediation Project
- Hydrogeology of Boat Harbour
 - Conceptual Model
 - Model Approach
 - Model Predictions
 - Remediation Project
 - Interaction with Pictou Landing Water Supply Wells
- Implications and Applications for Remediation

- Nova Scotia Lands Inc. retained AECOM for 2 separate contracts to assist in the planning process for the remediation project:
 - Hydrology Assessment (July 2015)
 - Hydrogeology Assessment (September 2015)

- AECOM team involved local staff from Halifax and Sydney offices with subject matter experts from London and Guelph
 - AECOM's field work was supported by a local staff member from Pictou Landing
- AECOM completed plain language reports and provided presentations on these projects to the local Pictou Landing First Nation Community

Introduction (continued)

- AECOM's hydrology group led by Christopher Moon, P.Eng., developed a hydrologic model (PCSWMM) to understand surface water function under varying climatic conditions, with objectives to:
 - Determine catchment characteristics;
 - · Develop hydrologic / hydraulic models; and
 - Review water management opportunities and constraints for the remediation project.
- AECOM's hydrogeology group led by modeller Miln Harvey, P.Eng.
 Ph.D, developed a groundwater model (MODFLOW-NWT) to understand:
 - Groundwater discharge to the harbour;
 - Groundwater flows around the Boat Harbour Treatment Facility; and
 - Potential interaction with the Pictou Landing First Nation water supply wells.

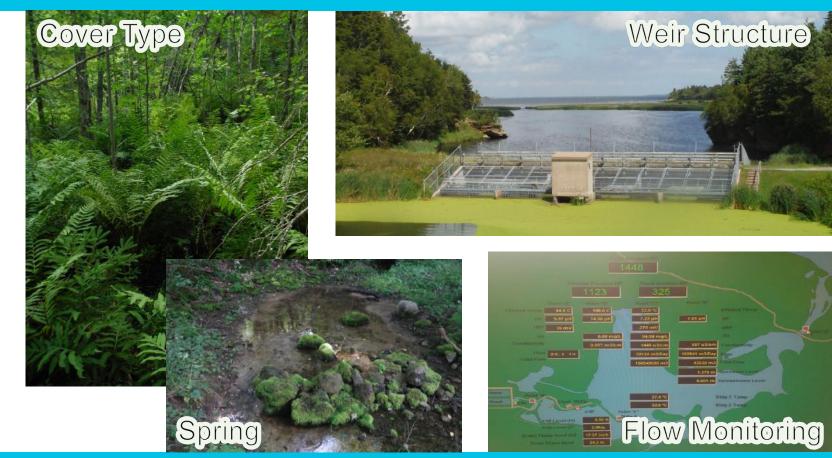

Chris Moon, AECOM

Miln Harvey, AECOM

Boat Harbour Treatment Facility (BHTF)

- Effluent from kraft pulp mill directed to settling ponds via 3 km pipeline
- Settling basins remove total suspended solids
- Aeration Stabilization
 Basin (ASB) remove
 biodegradable fines and
 total dissolved solids
- Treated effluent from ASB is discharged at Point C and flows through harbour to an aeration cell controlled by a weir structure, Point D

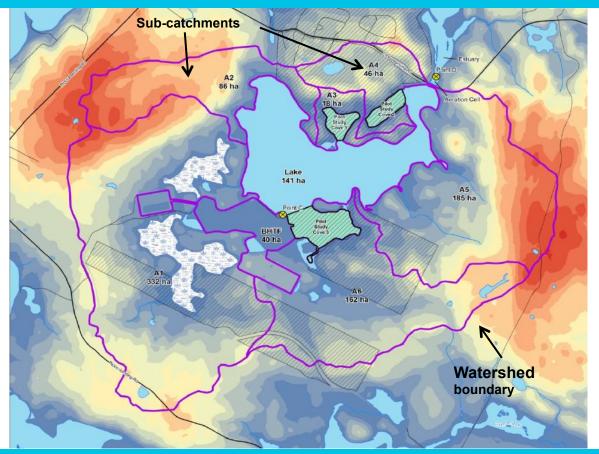
The Water Cycle and Water Balance



The Water Budget: quantifying movement of water in a basin Inflows = Outflows +/- Δ Storage $P=RO+R+ET+\Delta Ss+\Delta Gs$

> Where: P = precipitation; RO = runoff; R = groundwater recharge ET = evapotranspiration $\Delta Ss = change in soil moisture$ storage $\Delta Gs = change in groundwater$ storage

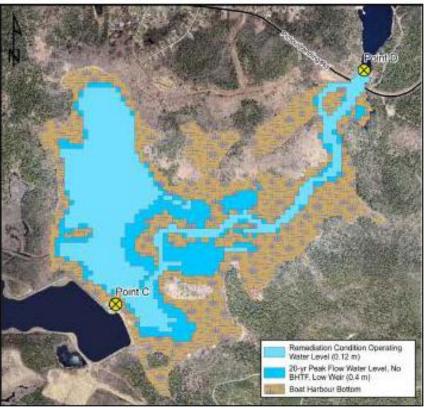
Hydrology Assessment – Field Work


Modelling Approach

Continuous• Daily time step• Long-term Modelling• Calibration• Misses actual peak flow• Understanding of 'average' conditions• Understanding of 'average' conditionsExisting ConditionsContinuous Model – 4 yearsCalibration using flow monitoring dataEstimate groundwater input	Continuous vs Event Based					
Conditions Continuous using flow groundwater	 Daily time st Long-term M Calibration Misses actus Understandi 	ep /lodelling al peak flow ing of 'average' conditions	 15 minute t Single Data Captures r Understand 	time step a Event naximum instantaneous ding of worst case cond		
M[000] = 21 388088000101 $M[000] Heino 118100$	Conditions	Model – 4 years Continuous Model – 21	using flow monitoring data Long-term assessment of	groundwater input Event based modelling using	Determine the maximum per	

Page 8

			1.1
	-	•	
_		~	


Model Development and Calibration

- Model development using data sources:
 - Bathymetry
 - Topography (LiDAR)
 - Landuse / soils
 - Climate / tide data
 - Flow monitoring
- Catchment divided into subcatchments to allow modelling of peak flows at pilot coves
- Corrections made during calibration for:
 - Snowmelt timing
 - Groundwater base flow
 - Dampening of rainfall peaks

Results

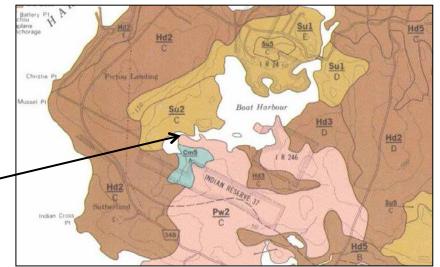
Estimated water edge during 20 yr Design Storm (0.40 m elevation)

Drawdown Modelling

- Initial Drawdown from 1.30 m to 0.12 m water elevation
- Water Volume = 253 ML

Design Storm During Remediation

- 20-year instantaneous peak flow = 22.7 m³/s
- Total runoff volume = 305 ML (occurs over 30 hours)
- Peak water level = 0.40 m elevation



The Water Balance – Transition to Hydrogeology Work

- From the Hydrology Study we know:
 - Precipitation = 1,060.3 mm (42")/yr
 - Evapotranspiration = 427.1 mm/yr
 - <u>Runoff = 190.0 mm/yr</u>
 - Recharge = 443.2 mm/yr → Area = 10,120,700 m² →

GW Discharge, Q = 0.14 m³/s

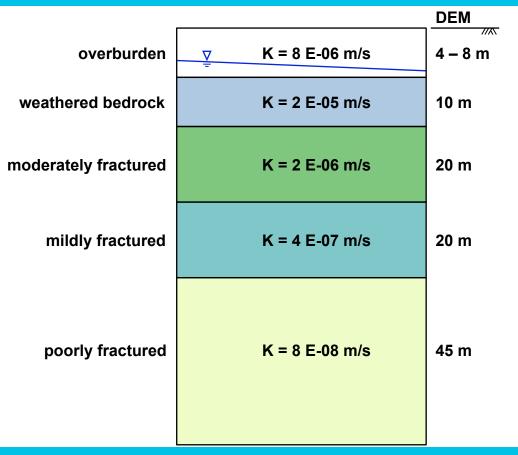
- In Hydrogeology Study: recharge was distributed using the soils map of Nova Scotia
 - Each soil type is given a value of recharge
 - The area of each type determines net recharge

Background Review & Field Investigations – October, 2015 and January, 2016

- Background review

- 21 of 112 reports reviewed relevant to hydrogeologic setting:
 - Thorburn water supply regional investigation
 - Pictou Landing First Nation water supply study
 - Boat Harbour Treatment Facility sludge disposal facility monitoring
 - Boat Harbour hydrology, sediment characteristics
- Static water levels measured in 31 MWs in the Old / New Wellfields
- Stream flow measured at spring on NW of Boat Harbour
- Data gap around BHTF created need for a drilling, hydraulic testing and survey program in January, 2016:
 - 6 well nests (shallow, deep) around the BHTF
 - Land survey of well location, elevation and pond elevations
 - Slug testing, water levels

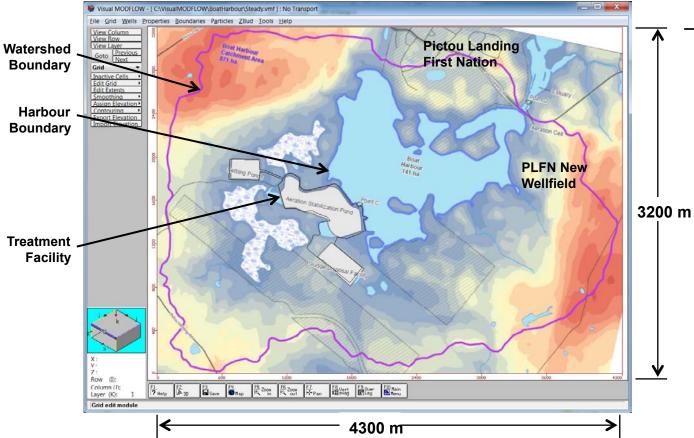
Site Hydrogeology



Bedrock outcrop at estuary outlet at Compliance Point D

- Thin glacial till underlain by Pictou
 Group sandstone and shale bedrock
- Till / bedrock interface and bedrock surface
 - Area of abundance of fracturing
 - Majority of groundwater occurs in this area
- Groundwater flow:
 - Primarily via bedrock fractures
 - Horizontal to sub-horizontal fracturing
- Fracture density and hydraulic conductivity decrease with depth

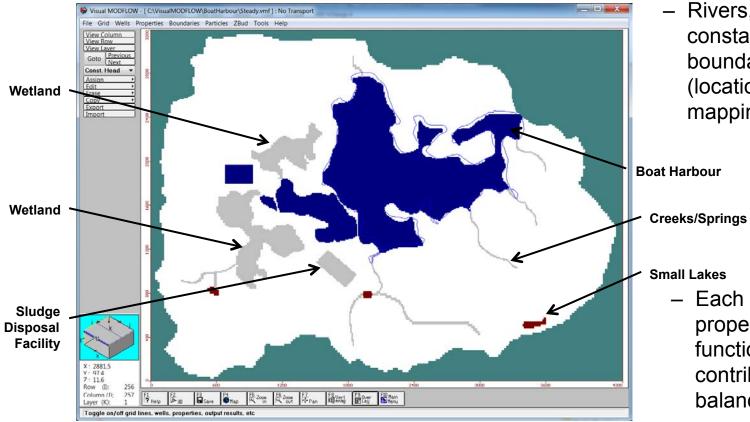
Site Hydrogeology - continued



- Conceptual hydrogeological model:
 - **Ground surface** using the Digital Elevation Model (DEM) that was developed for the hydrologic model
 - **Overburden** from the well logs
 - Weathered bedrock layer

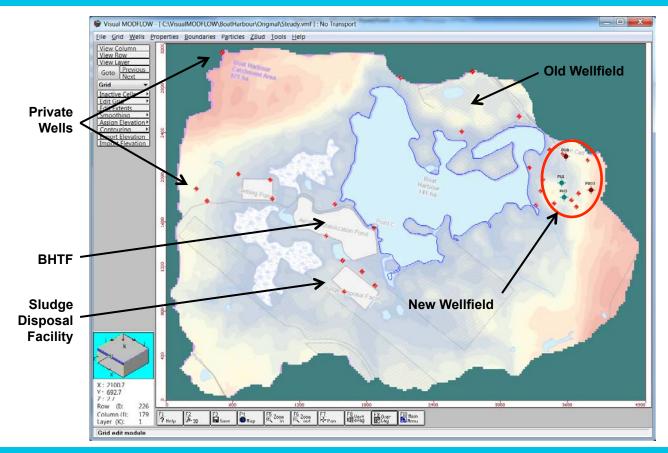
 Highly fractured
 - 10 m constant thickness
 - Moderately fractured
 20 m constant thickness
 - Mildly fractured
 20 m constant thickness
 - Poorly fractured

 45 m constant thickness

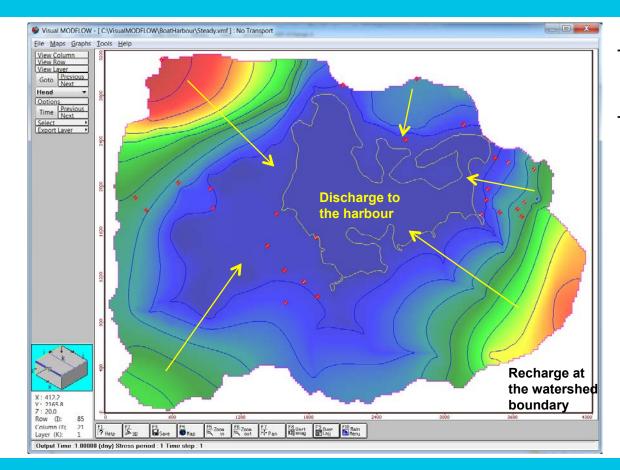

MODFLOW Model Domain

 The outer limit of the flow system is the watershed boundary

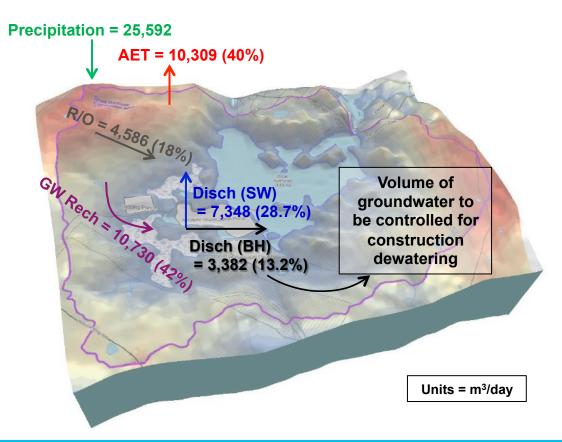
Model Boundaries


 Rivers, drains and constant head boundaries assigned (location based on mapping)

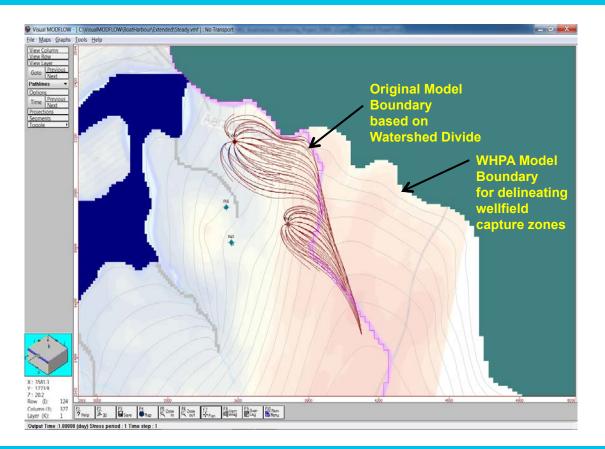
 Each feature type has properties depend on function of water contribution in the water balance


Pumping Wells and Monitoring Wells

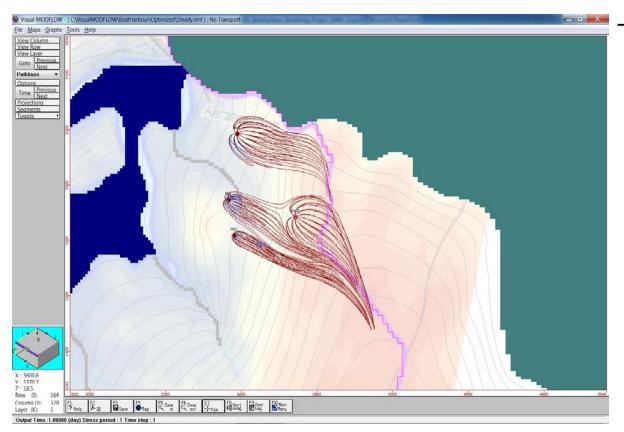
- Head observation wells (MWs) used for model calibration
- Pumping Wells (PW1, PW3, PW9 and PW10)
- Visited the New Wellfield and spoke with the operator, confirmed
 - PW9 and 10 active
 - PW1 and 3 inactive
 - PW8 never used


Model Simulation

- Simulated water table elevation
- All recharge must discharge to internal boundaries, or to the harbour water body.

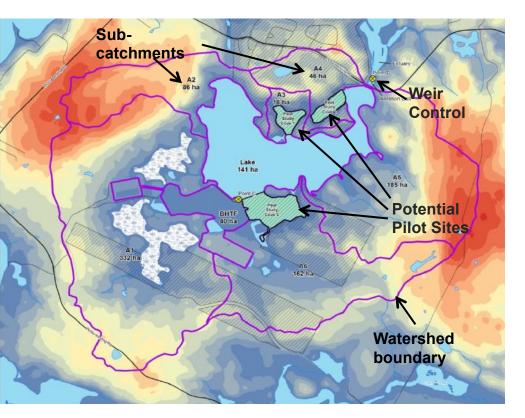

Water Budget Summary

Watershed hydrologic cycle components


Wellhead Protection Area (WHPA) Delineation (PLFN New Wellfield)

- Capture zones for active wells PW9 and PW10 modelled based on 2014/2015 usage rates
- The capture zones extend across the watershed boundary
- Required extension of WHPA model boundary
- Predicted drawdown associated with remediation construction dewatering of:
 - 0.88 m at PW9, and;
 - 0.39 m at PW10

WHPA Delineation – Optimized Well Usage


- We can minimize drawdown effects if we distribute pumping
 - Re-ran model using recommended wellfield pumping rates set out in design
 - Predicted drawdown is reduced with:
 - $\circ~$ 0.40 m at PW1
 - $\circ~$ 0.23 m at PW3
 - $\circ~$ 0.57 m at PW9 (vs 0.88*) and,
 - 0.21 m at PW10 (vs 0.39*)
 - $_{\odot}$ * Current-day 2 well operation

Implications and Applications for Remediation

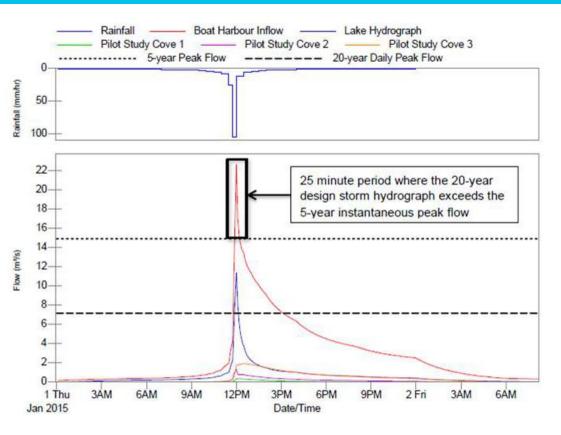
How do we apply hydrology and hydrogeology to remediation planning?

Remediation Water Management

Phased Dewatering And Storm Water Management

- Early Stage Pilots Study Sites
- Gravity dewatering potential
- Dividing and conquering for Remediation Plan
- Storm Water Pumping and Bypass planning
- Using Bathymetry to support stage planning
- Understanding the role of Tide Gate Control during Remediation

Pumping and Bypass



	Catchment	Parameter	2-year	5-year	10-year	20-year	50-year	100- year
	Boat Harbour	Peak Inflow (m ³ / s)	10.77	14.93	18.09	22.66	26.39	30.44
		Total Runoff Volume (m ³)	149,100	206,680	248,360	305,180	349,330	395,130
		Peak Water Elevation (m)	0.28	0.33	0.36	0.40	0.42	0.45
		Daily Peak Flow from Continuous Model (m ³ /s)		5.50		7.16		
	Catchment A3 Pilot Study Cove 1	Peak Flow (m ³ / s)	0.11	0.18	0.25	0.35	0.44	0.53
		Runoff Volume (m ³)	2220	3130	3800	4710	5430	6170
	Catchment A4 Pilot Study Cove 2	Peak Flow (m ³ / s)	0.64	0.88	1.07	1.35	1.58	1.83
		Runoff Volume (m ³)	7,170	9,890	11,830	14,490	16,540	18,670
	Catchment A6 Pilot Study Cove 3	Peak Flow (m ³ / s)	0.62	1.04	1.39	1.93	2.37	2.86
		Runoff Volume (m ³)	20,760	29,690	36,200	45,130	52,100	59,370

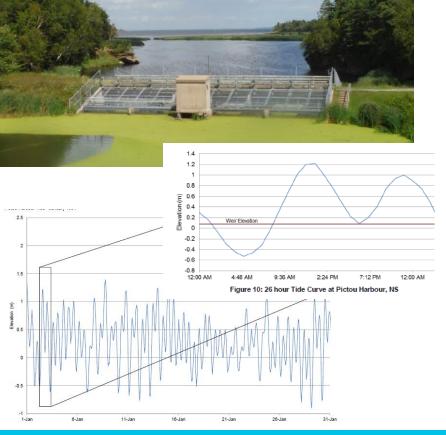
ΑΞϹΟΜ

Risk Based Planning

Hydrology Study Results Inform

- Development of Performance-Based pumping criteria
- Determinations Routine Pumping Vs Intense Storm bypass rates

-	Design Storm	24 hr Rainfall Depth (mm)		
	2-year	55.5		
	5-year	67.5		
	10-year	75.4		
	20-year	85.5		
	50-year	92.9		
	100-year	100.3		


- Risk Allocation strategies based on flow rates
- Assessment of risk exposure based on construction phase
- Development of Storm Event Management strategies

"Batten down the hatches!

A Nor'Easter is a coming."

AECOM

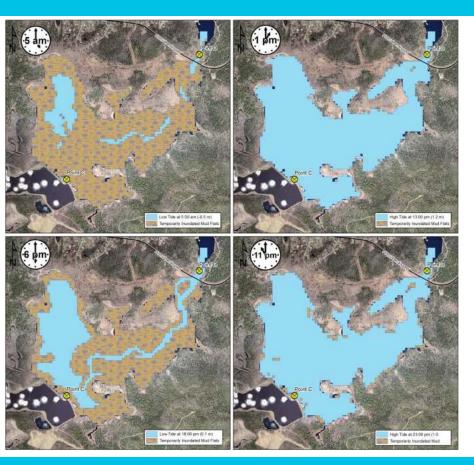
Weir / Tide Gate

- Current Situation:
 - Currently 2.1 m wide rectangular weir at elevation 0.89 m
 - $\,\circ\,$ Tide gates to stop tidal inflow
 - Total Flow = Effluent + Precipitation Flows
 - $\,\circ\,$ Maintains Boat Harbour at operating level

- Potential Operation During Remediation:

- $_{\odot}$ Weir configuration to be determined
- $\,\circ\,$ Tide gates to stop tidal inflow
- \circ Total Flow = Precipitation Flows
- o Gravity drawdown management
- Post Remediation:
 - Total Flow = Rainfall Flows + Tidal Flow
 - $_{\odot}$ Potential 37.5 m wide weir at elevation ~0.08 m

Groundwater and Construction Water


During Remediation all water is not "Created Equal"

- Surface water is pumped and bypassed
- Construction water and groundwater are considered potentially impacted and need to be managed accordingly
- Impacts can be:
 - Suspended solids like clays are silts causing turbidity
 - Chemical contaminants
- Hydrogeology study reports GW Discharge:


 $Q = 0.14 \text{ m}^3/\text{s}$ for entire Boat Harbour site

Post Remediation – Return to Tidal

Planning the future by looking into the past

Authors

Randy Pointkoski, Nora Doran, Christopher Moon, Miln Harvey, (AECOM) **NSLands**

Donnie Burke and Randy Vallis, (Nova Scotia Lands)

ARC 2016 November 8-9, 2016 Halifax, Canada

Thank You!